Pharmacological potentials and Nutritional values of Tropical and Sub-tropical Fruits of India: Emphasis on their anticancer bioactive components

Author(s):  
Arunaksharan Narayanankutty

Background: Fruits are an important dietary component, which supply vitamins, minerals, as well as dietary fiber. In addition, they are rich sources of various biological and pharmacologically active compounds. Among these, temperate fruits are well studied for their pharmacological potentials, whereas tropical/subtropical fruits are less explored for their health impacts. In India, most of the consumed fruits are either tropical or subtropical. Objectives: The present review aims to provide a health impact of major tropical and sub-tropical fruits of India, emphasizing their anticancer efficacy. In addition, the identified bioactive components from these fruits exhibiting anticancer efficacy are also discussed along with the patent literature published. Methods: The literature was collected from various repositories, including NCBI, ScienceDirect, Eurekaselect, and Web of Science; literature from predatory journals was omitted during the process. Patent literature was collected from google patents and similar patent databases. Results: Tropical fruits are rich sources of various nutrients and bioactive components including polyphenols, flavonoids, anthocyanin, etc. By virtue of these biomolecules, tropical fruits have been shown to interfere with various steps in carcinogenesis, metastasis, and drug resistance. Their mode of action is either by activation of apoptosis, regulation of cell cycle, inhibition of cell survival and proliferation pathways, increased lipid trafficking or inhibiting inflammatory pathways. Several molecules and combinations have been patented for their anticancer and chemoprotective properties. Conclusion: Overall, the present concludes that Indian tropical/ subtropical fruits are nutritionally and pharmacologically active and may serve as a source of novel anticancer agents in the future.

2021 ◽  
Vol 14 (2) ◽  
pp. 139
Author(s):  
Mohammad Azam Ansari ◽  
Sarah Mousa Maadi Asiri ◽  
Mohammad A. Alzohairy ◽  
Mohammad N. Alomary ◽  
Ahmad Almatroudi ◽  
...  

The current study demonstrates the synthesis of fatty acids (FAs) capped silver nanoparticles (AgNPs) using aqueous poly-herbal drug Liv52 extract (PLE) as a reducing, dispersing and stabilizing agent. The NPs were characterized by various techniques and used to investigate their potent antibacterial, antibiofilm, antifungal and anticancer activities. GC-MS analysis of PLE shows a total of 37 peaks for a variety of bio-actives compounds. Amongst them, n-hexadecanoic acid (21.95%), linoleic acid (20.45%), oleic acid (18.01%) and stearic acid (13.99%) were found predominately and most likely acted as reducing, stabilizing and encapsulation FAs in LIV-AgNPs formation. FTIR analysis of LIV-AgNPs shows some other functional bio-actives like proteins, sugars and alkenes in the soft PLE corona. The zone of inhibition was 10.0 ± 2.2–18.5 ± 1.0 mm, 10.5 ± 2.5–22.5 ± 1.5 mm and 13.7 ± 1.0–16.5 ± 1.2 against P. aeruginosa, S. aureus and C. albicans, respectively. LIV-AgNPs inhibit biofilm formation in a dose-dependent manner i.e., 54.4 ± 3.1%—10.12 ± 2.3% (S. aureus), 72.7 ± 2.2%–23.3 ± 5.2% (P. aeruginosa) and 85.4 ± 3.3%–25.6 ± 2.2% (C. albicans), and SEM analysis of treated planktonic cells and their biofilm biomass validated the fitness of LIV-AgNPs in future nanoantibiotics. In addition, as prepared FAs rich PLE capped AgNPs have also exhibited significant (p < 0.05 *) antiproliferative activity against cultured HCT-116 cells. Overall, this is a very first demonstration on employment of FAs rich PLE for the synthesis of highly dispersible, stable and uniform sized AgNPs and their antibacterial, antifungal, antibiofilm and anticancer efficacy.


2019 ◽  
Vol 20 (6) ◽  
pp. 1300 ◽  
Author(s):  
Natalia Piekuś-Słomka ◽  
Renata Mikstacka ◽  
Joanna Ronowicz ◽  
Stanisław Sobiak

The growing interest in anticancer hybrids in the last few years has resulted in a great number of reports on hybrid design, synthesis and bioevaluation. Many novel multi-target-directed drug candidates were synthesized, and their biological activities were evaluated. For the design of anticancer hybrid compounds, the molecules of stilbenes, aromatic quinones, and heterocycles (benzimidazole, imidazole, pyrimidine, pyridine, pyrazole, quinoline, quinazoline) were applied. A distinct group of hybrids comprises the molecules built with natural compounds: Resveratrol, curcumin, coumarin, and oleanolic acid. In this review, we present the studies on bioactive hybrid molecules of a well-known tubulin polymerization inhibitor, combretastatin A-4 and its analogs with other pharmacologically active entities. The mechanism of anticancer activity of selected hybrids is discussed considering the structure-activity relationship.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Grady L. Nelson ◽  
Conor T. Ronayne ◽  
Lucas N. Solano ◽  
Sravan K. Jonnalagadda ◽  
Shirisha Jonnalagadda ◽  
...  

AbstractNovel silyl cyanocinnamic acid derivatives have been synthesized and evaluated as potential anticancer agents. In vitro studies reveal that lead derivatives 2a and 2b have enhanced cancer cell proliferation inhibition properties when compared to the parent monocarboxylate transporter (MCT) inhibitor cyano-hydroxycinnamic acid (CHC). Further, candidate compounds exhibit several-fold more potent MCT1 inhibition properties as determined by lactate-uptake studies, and these studies are supported by MCT homology modeling and computational inhibitor-docking studies. In vitro effects on glycolysis and mitochondrial metabolism also illustrate that the lead derivatives 2a and 2b lead to significant effects on both metabolic pathways. In vivo systemic toxicity and efficacy studies in colorectal cancer cell WiDr tumor xenograft demonstrate that candidate compounds are well tolerated and exhibit good single agent anticancer efficacy properties.


2017 ◽  
Author(s):  
Thoukhir B. Shaik ◽  
M. Shaheer Malik ◽  
Zaki S. Seddigid ◽  
Sunitha R Routhu ◽  
Ahmed Kamal

AbstractCancer is one of the major health and social-economic problems despite considerable progress in its early diagnosis and treatment. Owing to the emergence and increase of multi drug resistance to various conventional drugs, and the continuing importance on health-care expenditure, many researchers have focused to develop novel and effective anticancer compounds. In the present study, a series of in-house synthesized quinazoline and quinazolino-benzothiadiazine derivatives were investigated for their anticancer efficacy against a panel of five cancer (DU145, MCF7, HepG2, SKOV3 and MDA-MB-231) and one normal (MRC5) cell lines. Among all the tested compounds, fifteen of them exhibited promising growth-inhibitory effect (0.15 - 5.0 μM) and induced cell cycle arrest in G2/M phase. In addition, the selected compounds inhibited the microtubule assembly; altered mitochondrial membrane potential and enhanced the levels of caspase-9 in MCF-7 cells. Furthermore, the active compound with combination of drugs showed synergistic effect at lower concentrations and the drug uptake was mediated through clathrin mediated endocytic pathway. Our results indicated that quinazoline and quinazolino-benzothiadiazine conjugates could serve as potential leads in the development of personalized cancer therapeutics.SummaryThe present study describes the exploration of small molecules based on heterocyclic scaffolds for tubulin target based development of anticancer agents.


2020 ◽  
Vol 11 (12) ◽  
pp. 31-34
Author(s):  
S Aneesh ◽  
J E Thoppil

Natural compounds with biological activity are normally present in plants, mushrooms and their natural sources. Applied mycology is one of the most stimulating and rapidly evolving areas of the biological sciences. Hence the present study focussed on exploring Microporus affinis (Blume & T. Nees) Kunt., the least explored and edible bracket fungus. Chemical characterization by GC-MS analysis resulted in the presence of 47 bioactive compounds. 9, 12- Octadecadienoic acid (Z,Z)- methyl ester, Ergosterol, Monolinolein, Thiacremonone, Stellasterol, n- Hexadecanoic acid, Ribitol, Maltol etc., were the leading compounds. Because of the presence of various bioactive compounds which have been already reported to possess antitumor, antioxidant and anticancer activities, M. affinis extract has been tested for in vitro anticancer efficacy on DLD1 cell lines (cultured in DMEM medium) using MTT assay. It resulted in the decrease of percentage of viability as the increase in concentration of the extract. Apoptosis was determined by using Acridine orange and Ethidium bromide staining. Thus, the taxa, M. affinis can be recommended for further anticancer assays for validation.


2020 ◽  
Vol 9 (3) ◽  
pp. 87-116
Author(s):  
Naseem Akhtar ◽  
Salman AA Mohammed ◽  
Varsha Singh ◽  
Ahmed AH Abdellatif ◽  
Hamdoon A Mohammad ◽  
...  

Phospholipid-based liposomal vesicles are among the most effective delivery options currently available for various classes of anticancer drugs. The patents granted to inventions disclosing details on liposomal delivery module by the US Patent and Trademark Office, European Patent Office, and world patent holdings through WIPO (World Intellectual Property Organization) patenting have been sorted based upon liposome, and anticancer keywords within the abstract and claims sections of the patents for the period between 2000 and 2019, thereby disclosing novel liposome formulations encapsulating single, or combination of chemotherapeutic agents that have been far more chemically and physiologically stable, therapeutically efficacious, and comparatively less toxic than their nonliposomal free-drug counterparts. The added stability, site-specific transport, and payload delivery, enhanced bioavailability, fast body clearance, and biocompatibility together with the controlled and sustained delivery-related benefits claimed in the patent literature have been exclusively discussed with a focus on the last 5-year period.


2019 ◽  
Vol 14 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Darinka G. Ackova ◽  
Katarina Smilkov ◽  
Darko Bosnakovski

Background: The immense development in the field of anticancer research has led to an increase in the research of bioactive compounds with anticancer potential. It has been known that many bioactive natural compounds have low solubility (and low bioavailability) as their main drawback when it comes to the formulation and drug delivery to specific sites.Objective:As many attempts have been made to overcome this issue, this review gives a summary of the current accomplishments regarding the development of new Drug Delivery Systems (DDSs) represented by nanoparticles (NPs) and exosomes.Methods:We analyzed the published data concerning selected compounds that present the most prominent plant secondary metabolites with anticancer potential, specifically flavone (quercetin), isoflavone (genistein and curcumin) and stilbene (resveratrol) groups that have been formulated as NPs and exosomes. In addition, we summarized the patent literature published from 2015-2018 that address these formulations.Results:Although the exact mechanism of action for the selected natural compounds still remains unclear, the anticancer effect is evident and the main research efforts are directed to finding the most suitable delivery systems. Recent patents in this field serve as evidence that these newly designed natural compound delivery systems could be powerful new anticancer agents in the very near future if the noted difficulties are overcome.Conclusion:The focus of recent research is not only to clarify the exact mechanisms of action and therapeutic effects, but also to answer the issue of suitable delivery systems that can transport sufficient doses of bioactive compounds to the desired target.


Heterocycles ◽  
1985 ◽  
Vol 23 (5) ◽  
pp. 1173 ◽  
Author(s):  
Sayeed-Ud-Din Saraf ◽  
Sayeed Saraf ◽  
Mustafa Edun ◽  
Muhammad Akram Khan

Author(s):  
Pratibha Mehta Luthra ◽  
Nitin Kumar

Abstract: The carbazole skeleton, a key structural motif occurring naturally or chemically synthesized, have shown various biological activities. Molecular hybridization based on the combination of two or more bioactive pharmacophores has been an important tool to convert the potent structural leads to form new hybrid compounds with improved biological activity. In recent years, modifications/substitutions of the carbazole motif at C3, C6, N9 position have been carried to develop novel carbazole based potential anticancer agents in the cancer therapy. In the last fifteen years, several compounds based on carbazole core integrated to pharmacologically active molecular hybrid having active pharmacophore such as 1,3,4-thiadiazole, thiazole, guanidine, sulfonamides, glyoxamides, imidazole, phenanthrene, rhodamine, chalcones, imidazopyridine, platinum 2H-chromen-2-one, hydrazones, piperazine, Isoxazole-thiadiazole, pyrazole etc. have been synthesized showing anticancer profile at sub-micromolar to nano-molar concentrations. We have thoroughly reviewed the design, progress and development of C-3, C-6, and N-9 position substituted carbazole derivatives integrated with various medicinally active pharmacophore as potential anticancer agents evaluated against various cancer cell lines. Additionally, the anticancer mechanism and in vivo activity of the reported compounds have been discussed. This study will support in designing of a new pharmacophore that can be linked to carbazole motif for development for new, potent and target specific anticancer drugs with improved pharmacokinetics and minimal side effects.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2032
Author(s):  
Vanessa Brito ◽  
Gilberto Alves ◽  
Paulo Almeida ◽  
Samuel Silvestre

Steroids constitute a unique class of chemical compounds, playing an important role in physiopathological processes, and have high pharmacological interest. Additionally, steroids have been associated with a relatively low toxicity and high bioavailability. Nowadays, multiple steroidal derivatives are clinically available for the treatment of numerous diseases. Moreover, different structural modifications on their skeleton have been explored, aiming to develop compounds with new and improved pharmacological properties. Thus, steroidal arylidene derivatives emerged as a relevant example of these modifications. This family of compounds has been mainly described as 17β-hydroxysteroid dehydrogenase type 1 and aromatase inhibitors, as well as neuroprotective and anticancer agents. Besides, due to their straightforward preparation and intrinsic chemical reactivity, steroidal arylidene derivatives are important synthetic intermediates for the preparation of other compounds, particularly bearing heterocyclic systems. In fact, starting from arylidenesteroids, it was possible to develop bioactive steroidal pyrazolines, pyrazoles, pyrimidines, pyridines, spiro-pyrrolidines, amongst others. Most of these products have also been studied as anti-inflammatory and anticancer agents, as well as 5α-reductase and aromatase inhibitors. This work aims to provide a comprehensive overview of steroidal arylidene derivatives described in the literature, highlighting their bioactivities and importance as synthetic intermediates for other pharmacologically active compounds.


Sign in / Sign up

Export Citation Format

Share Document