scholarly journals Adaptability Evaluation of Polymer Flooding for Zahra Oil Field

2015 ◽  
Vol 9 (1) ◽  
pp. 7-13
Author(s):  
Peng Lv ◽  
Mingyuan Li ◽  
Meiqin Lin ◽  
Bo Peng ◽  
Zhaoxia Dong ◽  
...  

Viscosity-concentration and temperature performance are the prerequisite constraint factor of the application of polymer flooding in the oilfield. The static and dynamic adsorption of the polymer in the core can affect the performance of polymer flooding. Based on the viscosity-concentration, temperature and the static, dynamic adsorption results of six kinds of polymers, DQ3500 is chosen as the most suitable polymer for Zahra oilfield. Its affects show that oil recovery is increased by 7% and water cut is reduced by 20%.

2020 ◽  
Vol 17 (35) ◽  
pp. 663-677
Author(s):  
Gulnaz MOLDABAYEVA ◽  
Raikhan SULEIMENOVA ◽  
Akmaral KARIMOVA ◽  
Nurken AKHMETOV ◽  
Lyailya MARDANOVA

One of the chemical methods of stimulating the reservoir to increase the efficiency of the oil field development process is polymer flooding. This article conducted a feasibility study of the effectiveness of the application of polymer flooding technology in one field in Western Kazakhstan. This field is characterized by high viscosity of reservoir oil, water cut, and dynamic heterogeneity of the reservoir. World experience in the application of polymer flooding in analogous fields shows high technological efficiency. Presented results of the analysis of the experience of applying technology in analogous fields, physicochemical studies of polymers, filtration studies on bulk models, hydrodynamic modeling of polymer flooding and the expected cost-effectiveness of introducing the technology, as applied to the conditions of the Karazhanbas oil field with high viscosity of reservoir oil. The analysis based on the experience of applying polymer flooding in high-viscosity oil fields, laboratory studies and estimated calculations of the expected production in the sector geological and hydrodynamic model shows a decrease in water cut, an increase in oil production, and an increase in current and final oil recovery.


2009 ◽  
Vol 12 (03) ◽  
pp. 470-476 ◽  
Author(s):  
Dongmei Wang ◽  
Huanzhong Dong ◽  
Changsen Lv ◽  
Xiaofei Fu ◽  
Jun Nie

Summary This paper describes successful practices applied during polymer flooding at Daqing that will be of considerable value to future chemical floods, both in China and elsewhere. On the basis of laboratory findings, new concepts have been developed that expand conventional ideas concerning favorable conditions for mobility improvement by polymer flooding. Particular advances integrate reservoir-engineering approaches and technology that is basic for successful application of polymer flooding. These include the following:Proper consideration must be given to the permeability contrast among the oil zones and to interwell continuity, involving the optimum combination of oil strata during flooding and well-pattern design, respectively;Higher polymer molecular weights, a broader range of polymer molecular weights, and higher polymer concentrations are desirable in the injected slugs;The entire polymer-flooding process should be characterized in five stages--with its dynamic behavior distinguished by water-cut changes; -Additional techniques should be considered, such as dynamic monitoring using well logging, well testing, and tracers; effective techniques are also needed for surface mixing, injection facilities, oil production, and produced-water treatment; andContinuous innovation must be a priority during polymer flooding. Introduction China's Daqing oil field entered its ultrahigh-water-cut period after 30 years of exploitation. Just before large-scale polymer-flooding application, the average water-cut was more than 90%. The Daqing oil-field is a large river-delta/lacustrine facies, multilayered with complex geologic conditions and heterogeneous sandstone in an inland basin. After 30 years of waterflooding, many channels and high-permeability streaks were identified in this oil field (Wang and Qian 2002). Laboratory research began in the 1960s, investigating the potential of enhanced-oil-recovery (EOR) processes in the Daqing oil field. After a single-injector polymer flood with a small well spacing of 75 m in 1972, polymer flooding was set on pilot test. During the late 1980s, a pilot project in central Daqing was expanded to a multiwell pattern with larger well spacing. Favorable results from these tests--along with extensive research and engineering from the mid-1980s through the 1990s--confirmed that polymer flooding was the preferred method to improve areal- and vertical-sweep efficiency at Daqing and to provide mobility control (Wang et al. 2002, Wang and Liu 2004). Consequently, the world's largest polymer flood was implemented at Daqing, beginning in 1996. By 2007, 22.3% of total production from the Daqing oil field was attributed to polymer flooding. Polymer flooding boosted the ultimate recovery for the field to more than 50% of original oil in place (OOIP)--10 to 12% OOIP more than from waterflooding. At the end of 2007, oil production from polymer flooding at the Daqing oil field was more than 10 million tons (73 million bbl) per year (sustained for 6 years). The focus of this paper is on polymer flooding, in which sweep efficiency is improved by reducing the water/oil mobility ratio in the reservoir. This paper is not concerned with the use of chemical gel treatments, which attempt to block water flow through fractures and high-permeability strata. Applications of chemical gel treatments in China have been covered elsewhere (Liu et al. 2006).


2012 ◽  
Vol 550-553 ◽  
pp. 834-837
Author(s):  
Ji Gang Wang ◽  
Quan Qing Du ◽  
Peng Wu ◽  
Shao Li Hu ◽  
Pan Niu

Keywords: Visco-elastic property; polymer flooding; oil recovery Abstract. Polymer flooding and ASP flooding has improved oil recovery a lot in Daqing oil field. In ASP flooding, the existence of alkali decreases the visco-elastic characteristic of polymer, which decreases the oil recovery of polymer flooding. The aim of this paper was to study the visco-elastic characteristic, shear resistance in high concentration and high molecular weight polymer flooding, and analyzed the suitable parameter of it .They can provide the theory of polymer flooding development and application research.


2011 ◽  
Vol 51 (2) ◽  
pp. 672
Author(s):  
Daniel León ◽  
John Scott ◽  
Steven Saul ◽  
Lina Hartanto ◽  
Shannon Gardner ◽  
...  

After successful design and implementation phases that included both subsurface and facilities components, an EOR polymer injection pilot has been operational for two years in Australia's largest onshore oil field at Barrow Island (816 MMstb OOIP). The pilot's main objective was to identify a suitable EOR technology for the complex, highly heterogeneous, very fine-grained, bioturbated argillaceous sandstone—high in glauconite, high porosity (∼23 %), low permeability (∼5 mD, with 50+ mD streaks)—reservoir that will ultimately increase the recovery of commercial resources past the estimated ultimate recovery factor with waterflooding (∼42 %). This was achieved using the in-depth flow diversion (IFD) methodology to access new unswept oil zones—both vertically and horizontally—by inducing growth in the fracture network. During the pilot operating phase, the main focus has been on surveillance and monitoring activities to assess the effectiveness of the process, including: injection pressure at the wellheads—indicating any increase in resistance to flow; pressure fall off tests at the injectors—to determine fracture growth, if any sampling and lab analysis at the producers—to identify polymer breakthrough; frequent production tests—quantifying reduction in water cut and oil production uplift; and, pressure build up surveys at the producers. These activities provided input data to the fit for purpose simulation model built in Reveal incorporating fractures and polymer as a fourth phase. With more than 96 % compliance to the surveillance plan, this paper will present the present findings and evaluation of the results, which may lead to the continuation of the pilot in other patterns of the reservoir and, possibly, to further expansion in the field.


2008 ◽  
Vol 11 (06) ◽  
pp. 1117-1124 ◽  
Author(s):  
Dongmei Wang ◽  
Randall S. Seright ◽  
Zhenbo Shao ◽  
Jinmei Wang

Summary This paper describes the design procedures that led to favorable incremental oil production and reduced water production during 12 years of successful polymer flooding in the Daqing oil field. Special emphasis is placed on some new design factors that were found to be important on the basis of extensive experience with polymer flooding. These factors include (1) recognizing when profile modification is needed before polymer injection and when zone isolation is of value during polymer injection, (2) establishing the optimum polymer formulations and injection rates, and (3) time-dependent variation of the molecular weight of the polymer used in the injected slugs. For some Daqing wells, oil recovery can be enhanced by 2 to 4% of original oil in place (OOIP) with profile modification before polymer injection. For some Daqing wells with significant permeability differential between layers and no crossflow, injecting polymer solutions separately into different layers improved flow profiles, reservoir sweep efficiency, and injection rates, and it reduced the water cut in production wells. Experience over time revealed that larger polymer-bank sizes are preferred. Bank sizes grew from 240-380 mg/L·PV during the initial pilots to 640 to 700 mg/L·PV in the most recent large-scale industrial sites [pore volume (PV)]. Economics and injectivity behavior can favor changing the polymer molecular weight and polymer concentration during the course of injecting the polymer slug. Polymers with molecular weights from 12 to 35 million Daltons were designed and supplied to meet the requirements for different reservoir geological conditions. The optimum polymer-injection volume varied around 0.7 PV, depending on the water cut in the different flooding units. The average polymer concentration was designed approximately 1000 mg/L, but for an individual injection station, it could be 2000 mg/L or more. At Daqing, the injection rates should be less than 0.14-0.20 PV/year, depending on well spacing. Introduction Many elements have long been recognized as important during the design of a polymer flood (Li and Niu 2002; Jewett and Schurz 1970; Sorbie 1991; Vela et al. 1976; Taber et al. 1997; Maitin 1992; Koning et al. 1988; Wang et al. 1995; Wang and Qian 2002; Wang et al. 2008). This paper spells out some of those elements, using examples from the Daqing oil field. The Daqing oil field is located in northeast China and is a large river-delta/lacustrine-facies, multilayer, heterogeneous sandstone in an inland basin. The reservoir is buried at a depth of approximately 1000 m, with a temperature of 45°C. The main formation under polymer flood (i.e., the Saertu formation) has a net thickness ranging from from 2.3 to 11.6 m with an average of 6.1 m. The average air permeability is 1.1 µm2, and the Dykstra-Parsons permeability coefficient averages 0.7. Oil viscosity at reservoir temperature averages approximately 9 mPa·s, and the total salinity of the formation water varies from 3000 to 7000 mg/L. The field was discovered in 1959, and a waterflood was initiated in 1960. The world's largest polymer flood was implemented at Daqing, beginning in December 1995. By 2007, 22.3% of total production from the Daqing oil field was attributed to polymer flooding. Polymer flooding should boost the ultimate recovery for the field to more than 50% OOIP--10 to 12% OOIP more than from waterflooding. At the end of 2007, oil production from polymer flooding at the Daqing oil field was more than 11.6 million m3 (73 million bbl) per year (sustained for 6 years). The polymers used at Daqing are high-molecular-weight partially hydrolyzed polyacrylamides (HPAMs). During design of a polymer flood, critical reservoir factors that traditionally receive consideration are the reservoir lithology, stratigraphy, important heterogeneities (such as fractures), distribution of remaining oil, well pattern, and well distance. Critical polymer properties include cost-effectiveness (e.g., cost per unit of viscosity), resistance to degradation (mechanical or shear, oxidative, thermal, microbial), tolerance of reservoir salinity and hardness, retention by rock, inaccessible pore volume, permeability dependence of performance, rheology, and compatibility with other chemicals that might be used. Issues long recognized as important for polymer-bank design include bank size (volume), polymer concentration and salinity (affecting bank viscosity and mobility), and whether (and how) to grade polymer concentrations in the chase water. This paper describes the design procedures that led to favorable incremental oil production and reduced water production during 12 years of successful polymer flooding in the Daqing oil field.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5288
Author(s):  
Xianguo Zhang ◽  
Chengyan Lin ◽  
Yuqi Wu ◽  
Tao Zhang ◽  
Hongwei Wang ◽  
...  

During water and polymer flooding for enhanced oil recovery, pore structures may vary because of the fluid–rock interactions, which can lead to variations in petrophysical properties and affect oil field production. To investigate the effects of fluid flooding on pore structures, six samples were subjected to brine water, dual-system, and alkaline–surfactant–polymer (ASP) polymer displacement experiments. Before and after experiments, samples were scanned by X-ray CT. Thin sections, X-ray diffraction, and high pressure mercury injection tests were also carried out to characterize mineralogy and fractal dimension of pore systems before experiments. Experiment results show that water flooding with low injection pore volume ratio (IPVR) can improve reservoir quality since total porosity and connected porosity of samples rise after the flooding and the proportion of large pores also increases and heterogeneity of pore structure decreases. However, water flooding with high IPVR has reverse effects on pore structures. Polymer flooding reduces the total porosity, connected porosity, the percentage of small pores and enhances the heterogeneity of pore structures. It can be found that pore structures will change in fluid flooding and appropriate water injection can improve reservoir quality while excessive water injection may destroy the reservoir. Meanwhile, injected polymer may block throats and destroy reservoirs. The experimental results can be used as the basis for oil field development.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 562 ◽  
Author(s):  
Shuang Liang ◽  
Yikun Liu ◽  
Shaoquan Hu ◽  
Anqi Shen ◽  
Qiannan Yu ◽  
...  

With the rapid growth of energy consumption, enhanced oil recovery (EOR) methods are continually emerging, the most effective and widely used was polymer flooding. However, the shortcomings were gradually exposed. A novel decorated polyacrylamide might be a better alternative than polymer. In this work, the molecular structure and the properties reflecting the viscosity of decorated polyacrylamide, interfacial tension, and emulsification were examined. In order to better understand the interactions between decorated polyacrylamide and oil as well as the displacement mechanism, the displacement experiment were conducted in the etched-glass microscale model. Moreover, the coreflooding comparison experiments between decorated polyacrylamide and polymer were performed to investigate the displacement effect. The statistical analysis showed that the decorated polyacrylamide has excellent characteristics of salt tolerance, viscosity stability, and viscosification like polymer. Besides, the ability to reduce the interfacial tension in order 10−1 and emulsification, which were more similar to surfactant. Therefore, the decorated polyacrylamide was a multifunctional polymer. The displacement process captured by camera illustrated that the decorated polyacrylamide flooded oil mainly by means of ‘pull and drag’, ‘entrainment’, and ‘bridging’, based on the mechanism of viscosifying, emulsifying, and viscoelasticity. The results of the coreflooding experiment indicated that the recovery of decorated polyacrylamide can be improved by approximately 11–16% after water flooding when the concentration was more than 800 mg/L, which was higher than that of conventional polymer flooding. It should be mentioned that a new injection mode of ‘concentration reduction multi-slug’ was first proposed, and it obtained an exciting result of increasing oil production and decreasing water-cut, the effect of conformance control was more significant.


2010 ◽  
Vol 113-116 ◽  
pp. 835-839
Author(s):  
Yong Hong Huang ◽  
Guo Ling Ren ◽  
Hong Mei Yuan ◽  
Li Wei ◽  
Xiao Lin Wu ◽  
...  

To gain a better understanding of the mechanism and technology of microbial enhanced oil recovery, microbial community structure and diversity of reservoirs after polymer flooding in Daqing oil field at the Earlier Stage of microbial profile modification were studied. 16S rDNA gene clone library was used to assess the structure and diversity of microbial community. The results showed that the dominant microbes of the earlier stage of microbial profile modification are uncultured bacterium, comprising 88.6% of library clones. The cultured strains are composed of Epsilonproteobacteria(5.7%) , Gammaproteobacteria(4.7%) and Firmicutes (1%). Among the Epsilonproteobacteria, Sulfuricurvum accounts for 4.7% of the cultured strains of library clones and Arcobacter accounts for 1%. Besides, the dominant communities also include Pseudomonas and Moorella.


2014 ◽  
Vol 18 (01) ◽  
pp. 11-19 ◽  
Author(s):  
J.. Buciak ◽  
G.. Fondevila Sancet ◽  
L.. Del Pozo

Summary This paper deals with the learning curve of a five-plus-year polymer-flooding pilot conducted in a mature waterflood that includes, for example, several works related to injector and producer wells and reservoir management. The scope of this paper is to describe the learning curve during the last 5 years rather than the reservoir response of the polymer-flooding technique; focus is on the aspects related to reduce cost per incremental barrel of oil for a possible extension to other waterflooded areas of the field. Diadema oil field is in the San Jorge Gulf basin in the southern portion of Argentina. The field is operated by CAPSA, an Argentinean oil-producer company; it has 480 producer and 270 injector wells (interwell spacing is 250 m on average). The company has developed waterflooding over more than 18 years (today, this technique represents 82% of oil production in the field) and produces approximately 1600 m3/d of oil and 40 000 m3/d of gross production (96% water cut) with 38 400 m3/d of water injection. The reservoir that is polymer-flooded is characterized by high permeability (average of 500 md), high heterogeneity (10 to 5,000 md), high porosity (30%), very stratified sandstone layers (4 to 12 m of net thickness) with poor lateral continuity (fluvial origin), and 20 °API oil (100 cp at reservoir conditions). Diadema's polymer-flooding pilot started in October 2007 on five water injectors (it includes 13 injectors today) with an injected rate of 1000 m3/d (today, 2000 m3/d). Polymer solution is made with produced water (15,000 ppm brine) and 1,500 ppm of hydrolyzed polyacrylamide polymer reaching 15- to 20-cp fluid-injection viscosity. Oil-production rate from the original “central” producers (wells that are aided with 100% of polymer injection) has increased 100% at the same time as average reduction in water cut is approximately 15%. The main aspects presented in this work are depth profile modification with crosslinked gel injected along with polymer, use of “curlers” to regulate injection in multiple wells with one injection pump without shearing the polymer, and an improved technology on producer wells with progressing-cavity pumps to decrease shut-in time and number of pump failures. The plan for the future is to extend this project to other areas with the acquired knowledge and to improve different aspects, such as water quality and optimization of polymer plant operation. These improvements will allow the company to reduce operating costs per incremental barrel of oil.


Sign in / Sign up

Export Citation Format

Share Document