scholarly journals The Use of Sheet Glass Powder as Fine Aggregate Replacement in Concrete

2010 ◽  
Vol 4 (1) ◽  
pp. 65-71 ◽  
Author(s):  
M. Mageswari ◽  
Dr. B. Vidivelli

Sheet glass powder (SGP) used in concrete making leads to greener environment. In shops, near by Chidambaram many sheet glass cuttings go to waste, which are not recycled at present and usually delivered to landfills for disposal. Using SGP in concrete is an interesting possibility for economy on waste disposal sites and conservation of natural resources. This paper examines the possibility of using SGP as a replacement in fine aggregate for a new concrete. Natural sand was partially replaced (10%, 20%, 30%, 40% and 50%) with SGP. Compressive strength, Tensile strength (cubes and cylinders) and Flexural strength up to 180 days of age were compared with those of concrete made with natural fine aggregates. Fineness modulus, specific gravity, moisture content, water absorption, bulk density, %voids, % porosity (loose and compact) state for sand (S) and SDA were also studied. The test results indicate that it is possible to manufacture concrete containing Sheet glass powder (SGP) with characteristics similar to those of natural sand aggregate concrete provided that the percentage of SGP as fine aggregate is limited to 10-20%, respectively.

2018 ◽  
Vol 250 ◽  
pp. 03002 ◽  
Author(s):  
Muhammad Sazlly Nazreen ◽  
Roslli Noor Mohamed ◽  
Mariyana Aida Ab Kadir ◽  
Nazry Azillah ◽  
Nazirah Ahmad Shukri ◽  
...  

Lightweight concrete (LWC) has been identified as an innovative technique for construction purposes. Lightweight concrete can be categorized into three different types which are no-fine aggregate concrete, lightweight aggregate concrete and aerated concrete. This paper studied the characteristic of the lightweight concrete in term of mechanical properties utilizing the palm oil clinker (POC) as lightweight aggregates. Two mixes of lightweight concrete were developed, namely as POCC100 and POCC50 where each mix utilized 100% and 50% of total replacement to fine and coarse aggregates, respectively. The fresh and hardened POC concrete was tested and compared to the normal concrete (NC). The hardened state of the concrete was investigated through density test, ultrasonic pulse velocity, cube compressive, splitting tensile, flexural, modulus of elasticity and Poisson's ratio. From density test results, POC falls into the category of lightweight concrete with a density of 1990.33 kg/m3, which are below than normal weight concrete density. The mechanical properties test results on POCC100 and POCC50 showed that the concrete compressive strength was comparable about 85.70% and 96% compared to NC specimen, respectively. For the flexural strength, POCC50 and POCC100 were comparable about 98% and 97% to NC specimen, respectively. While splitting tensile strength of POCC50 and POCC100 was only 0.6% and 4% lower than NC specimen, respectively. In terms of sustainability of solid waste management, the application of the POC in construction will reduce the redundant of by-products resulted from the palm oil industries. After undergoing various testing of concrete mechanical properties, it can be concluded that POC aggregates was compatible to be used in ligtweight concrete mix proportion.


2018 ◽  
Vol 760 ◽  
pp. 193-198 ◽  
Author(s):  
Kristina Fořtová ◽  
Tereza Pavlů

This paper presents research results of recycled fine aggregate concrete testing. The main aim of this contribution is verification of properties of fine aggregate concrete with partial replacement of fine natural aggregate by recycled masonry aggregate originated from construction and demolition waste. The influence of partial replacement of natural sand to mechanical properties and freeze-thaw resistance is described. The compressive strength and flexural strength were tested at the age of 28 and 60 days and after 25, 50, 75 and 100 freeze-thaw cycles. Partial replacement of natural sand was 0, 25 and 50 % for all these tests. Prismatic specimens were examined.


Author(s):  
Prithvi S. Kandhal ◽  
Rajib B. Mallick ◽  
Mike Huner

Bulk specific gravity of the fine aggregate is used in hot-mix asphalt volumetric-mix design (including Superpave) to determine the amount of asphalt binder absorbed by the aggregate and the percentage of voids in the mineral aggregate. The current test method (AASHTO T84) uses a cone method to establish the saturated surface dry (SSD) condition of the sample, which is necessary to conduct the test. This method does not work satisfactorily for fine aggregates that are very angular and have rough surface texture and, therefore, do not slump readily when in SSD condition. A research project was undertaken to develop automated equipment and a method of establishing the SSD condition of the fine aggregate. The wet sample of the fine aggregate is placed in a rotating drum and subjected to a steady flow of warm air. The temperature gradient of the incoming and outgoing air and the relative humidity of the outgoing air are monitored to establish the SSD condition. Two prototype devices were constructed. The test results obtained with the second prototype device are encouraging and are reported. Further improvements to be made to the second prototype device to improve the repeatability and reproducibility of the test have been identified.


2011 ◽  
Vol 225-226 ◽  
pp. 577-580
Author(s):  
Yong Ye ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of fine aggregates (aggregate size smaller than or equal to 2.36 mm) on the compressive strength and creep behavior of asphalt mixtures. The variables that are considered in the study include the sizes and gradations of fine aggregate. A kind of standant aggregate gradation and four kinds of reduced aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions. The test results showed that the different fine aggregate sizes do not result in significant differences in compressive strength and creep values using the same percentage of fine aggregates (38.4%). Only the different gradations showed a little differences for mixtures made with different gradations but same aggregate size (between 2.36 and 1.18 mm).


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
G. Ganesh Prabhu ◽  
Jin Wook Bang ◽  
Byung Jae Lee ◽  
Jung Hwan Hyun ◽  
Yun Yong Kim

In recent years, the construction industry has been faced with a decline in the availability of natural sand due to the growth of the industry. On the other hand, the metal casting industries are being forced to find ways to safely dispose of waste foundry sand (FS). With the aim of resolving both of these issues, an investigation was carried out on the reuse of waste FS as an alternative material to natural sand in concrete production, satisfied with relevant international standards. The physical and chemical properties of the FS were addressed. The influence of FS on the behaviour of concrete was evaluated through strength and durability properties. The test results revealed that compared to the concrete mixtures with a substitution rate of 30%, the control mixture had a strength value that was only 6.3% higher, and this enhancement is not particularly high. In a similar manner, the durability properties of the concrete mixtures containing FS up to 30% were relatively close to those of control mixture. From the test results, it is suggested that FS with a substitution rate of up to 30% can be effectively used in concrete production without affecting the strength and durability properties of the concrete.


2014 ◽  
Vol 534 ◽  
pp. 39-51
Author(s):  
Zheng Hong Tian ◽  
Jing Wu Bu

This paper focuses on the pore structure parameters of mortars produced with manufactured sand and natural sand via water saturation and MIP methods. Test results show that, total porosity, as well as compressive strength, of manufactured sand mortar, is higher than that of natural sand mortar at fixed w/c and s/c ratio. Furthermore, considerable volume of large pores present in specimens of manufactured sand at higher w/c ratio rather not at the lower w/c ratio, which caused by the larger binder-aggregate interface. Manufactured fine aggregate in mortar probably accelerate hydrated reaction of cement, which result in the most probable pore size is finer than that of natural sand mortar. It can be concluded that the threshold region becomes flatten and threshold radius increases due to the aggregate volume concentration rises. Finally, a new theoretical model with a double-lognormal distribution function is demonstrated to be reasonable to fit pore size distribution in mortars.


2021 ◽  
Vol 27 (10) ◽  
pp. 34-49
Author(s):  
Muhammad Arf Muhammad ◽  
Bilal K. Mohammed ◽  
Faris R. Ahmed ◽  
Bayan S. Al Numan

Fine aggregates used for concrete works in Sulaymaniyah city frequently fail to meet the standard requirements for gradation and fineness modulus in cement concrete. This paper aims to critically evaluate gradation, fineness modulus, and clay contents of various natural sands produced and used for concrete work in the region.  Sixteen field sand samples were collected from various sites in Darbandikhan (5 samples), Qalat Dizah (5 samples), Koysinjaq (5 samples), and Piramagroon (1 sample) confirming to ASTM D75. The field samples were parted into test specimens based on ASTM C702. Then, sieve analysis was carried out on the oven-dry test specimens in compliance with ASTM C136. The test results of fine aggregates were compared with American, British, and Iraqi specification standards using ASTM C33, BS 882, and IQS No. 45. It was revealed that only three sands satisfy the ASTM gradation limits while others do not comply and are on the coarser side. Also, eight samples meet the requirements recommended by BS 882, whereas five samples meet limits by IQS No. 45. It was found that only three sands have the fineness modulus within the ranges recommended by ACI 211.1 and ACI 211.4, while the others have high values. Furthermore, it was found that all sands include an allowable amount of finer particles passing sieve size 0.075 mm. In order to improve particle size distributions, it is recommended to use the blending method to obtain a suitable fine aggregate from two or more failed sands.


Concrete is a material which widely used in construction industry. The present investigation deals with the study of partial replacement of fine aggregate by Nylon Glass Granules in concrete. The fine aggregates are replaced by 0%, 10%, 20% and 30% by Nylon Glass Granules by volume of natural sand in M35 grade of concrete. Additionally, to increase the tensile strength of concrete 1% of Steel Fiber by volume of cement were added to all the mixes containing Nylon Glass Granules. The concrete produced by such ingredients were cured for 7 and 28 days to evaluate its hardened properties. The 28days hardened properties of concrete revealed that maximum strength is observed for the mix which possesses 20% replacement of fine aggregate by Nylon Glass Granules compared with the conventional concrete, thus it is said to be the optimum mix


Author(s):  
Paulo Ricardo Alves dos Reis Santos ◽  
Diovana da Silva Santos ◽  
Max Silva de Almada ◽  
Lirana Lamara Barreto da Silva ◽  
Italo Gutierry Carneiro da Conceição ◽  
...  

In this study, the influence of partial introduction as glass as fine aggregate on the composition of simple concrete is analyzed, considering that sand (fine aggregate currently used) has been used on a large scale in civil construction over the years and has been affecting the environment. The main objective of this research was to analyze the mechanical properties of concrete, partially replacing the natural sand with another fine aggregate made from glass residues, evaluating the behavior presented at the end of each test using different percentages of this material as fine aggregate in the concrete composition. From an experimental methodology that consisted of determining an object of study (concrete), selecting the variable that would possibly be able to influence it (glass powder) and defining the ways of controlling and observing the effects that the variable would produce on the object, an interpretation of how the mechanical properties of the glass powder that affect the performance of structural concrete is presented. The granulometry was subsequently analyzed, the tests carried out both in the fresh and hardened state of the concrete, and identified that the glass in a certain percentage proves to be viable. Finally, it can be concluded that the partial inclusion of glass affects the mechanical properties of structural concrete, and can present quite satisfactory results, both related to the environment, since the sand would not be used entirely as fine aggregate or in reaching a resistance suitable for its final use.


2019 ◽  
Vol 97 ◽  
pp. 02004
Author(s):  
Lam Tang Van ◽  
Dien Vu Kim ◽  
Hung Ngo Xuan ◽  
Doan Tung Lam Nguyen ◽  
Boris Bulgakov ◽  
...  

This paper used the absolute volume method combined with the experiment to determine the compositions of high performance fine-grained concrete (HPFC) and presented the effect of limestone fine aggregate (LFA) and pozzolan (PU) on the HPFC properties. Test results showed that by increasing the LFA and PU, the workability of the concrete mixture decreased, the maximum slump loss after 90 minutes of mixing was 37.84%, whereas the mechanical properties of HPFC increased. The fine-grained concrete mixture containing 40% PU and LFA completely replaced material for natural sand, the compressive strength of concrete at 28-day increased about 23.87% in comparison to the control mixture. By using the standard NT Build 356, the destruction time of the four specimens tested was of 45, 63, 60 and 61 days, respectively. This result is due to the presence of PU increased the volume of the C-S-H, as well as the density of concrete structure and enhanced the strength of HPFC, thus increased destruction time of specimens used for the assessment of corrosion damage of reinforced in the concrete. The results of the current study support the use of the waste limestone from the quarries as a fine aggregate of green concrete in the future.


Sign in / Sign up

Export Citation Format

Share Document