scholarly journals Improvement of Flexural and Compressive Strength of Cement Mortar by Graphene Nanoplatelets

2021 ◽  
Vol 15 (1) ◽  
pp. 165-171
Author(s):  
Yu Chen ◽  
Xingchen Li ◽  
Chuangchuang Li ◽  
Nana Zhang ◽  
Ronggui Liu ◽  
...  

Background: In order to provide space for improving the durability of engineering structures by enhancing strength, the addition of nanomaterials has become a research trend in recent years. Graphene and its derivatives have unique properties and have been used in certain fields, which has also stimulated continuous and in-depth research on whether it can improve structural strength. Objective: This paper investigates the mechanical properties and mechanism of cement-based materials reinforced by Graphene Nanoplatelets (GNPs). Methods: Macroscopically, the flexural strength and compressive strengths of cement mortar were tested. Microscopically, the structure and composition were characterized and analyzed by SEM, EDS, and XRD. Results: The results show that the mechanical properties of modified cement mortar are directly related to the GNPs content. When the GNPs content is 0.04wt%, the flexural and compressive strength can still be increased by 12.8% and 33.9% after 28 d. Furthermore, the appropriate content of GNPs dispersed in the cement matrix played a role in promoting cement hydration. The interconnection with hydration products further reduces cracks and pores so that the cement composites form a denser microstructure. Conclusion: The results obtained above would provide references for understanding the reinforcement mechanism of GNPs.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jianping Zhu ◽  
Genshen Li ◽  
Chunhua Feng ◽  
Libo Wang ◽  
Wenyan Zhang

Delaminated MXene was incorporated into cement to improve the properties of cement composites, and its effects on the hydration process, microstructures, and mechanical properties were investigated, respectively. The investigation results showed that delaminated MXene was well-dispersed in the cement matrix and significantly reinforced the compressive strength of cement, especially when the addition is 0.01 wt%. Meanwhile, the total hydration heat of cement hydration and the quantity of hydration products were increased with the addition of delaminated MXene. In addition, the formation of HD C-S-H gel was promoted, and the microstructure of hydrated cement became more compact.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fakhim Babak ◽  
Hassani Abolfazl ◽  
Rashidi Alimorad ◽  
Ghodousi Parviz

We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.


2013 ◽  
Vol 671-674 ◽  
pp. 1869-1872 ◽  
Author(s):  
Wen Min He ◽  
Shuan Fa Chen ◽  
Chuang Wang ◽  
Xue Gang Zhang ◽  
Rui Xiong

Basalt fiber (BF) has a lot of advantageous properties. The actual effectiveness of the fiber depends greatly on their dispersion degree in the composites. With the help of ultrasonic wave and a dispersant carboxymethyl cellulose (CMC), the even dispersion of short basalt fibers in water is realized. The fluidity of the basalt fiber cement mortar becomes less as the fiber content increasing. When the fluidity of mortar of BFRC is greater than 170mm, the even dispersion of short basalt fibers in BFRC can be realized. Fly ash can effectively improve the fluidity of BFRC and the density of cement matrix. When the amount of fly ash replaces the cement less than 25% by weight, it can improve both the compressive strength and tensile strength at age of 28 days.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Tahereh Soleimani ◽  
Ali Akbar Merati ◽  
Masoud Latifi ◽  
Ali Akbar Ramezanianpor

The influence of adding Estabragh fibers into the cement composites of mortar on surface cracks and mechanical properties of mortar has been studied at various fiber proportions of 0.25%, 0.5%, and 0.75%. The mortar shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of mortar specimens. Although the Estabragh fibers loss their strength in an alkali environment of cement composites, the ability of Estabragh fibers to bridge on the microcracks in the mortar matrix causes a decrease in the number of cracks and in their width on the surface of the mortar samples in comparison with the plain mortar. However, considering the mechanical properties of specimens such as bending strength and compressive strength, among all fiber proportions, only the specimens with 0.25% of Estabragh fiber performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of mortar. Consequently, by adding 0.25% of Estabragh fibers to the cement mortar, a remarkable inhibition in crack generation on fiber-containing cement composite of mortar is achieved.


2013 ◽  
Vol 795 ◽  
pp. 128-132
Author(s):  
Nur Izzati Muhd Nadzri ◽  
Shamsul Baharin Jamaludin ◽  
Mohd Noor Mazlee

This research paper presents a study on the development of cement composites reinforced coconut fiber with fly ash addition. Various content of coconut fiber (3 wt. %, 6 wt. %, 9 wt. %, 12 wt. % and 15 wt. %) was added to the cement composites composition as reinforcement. Additions of 20 wt. % fly ash and 80 wt. % of sand were used as a mixture of cement matrix. Water to cement weight ratio ranging from 0.55 to 0.70 was used in the cement composites to maintain workability. The cement composites were then cured for 7, 14 and 28 days. The result is presented in terms of compressive strength, modulus of rupture and fracture behavior.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2694 ◽  
Author(s):  
Shansuo Zheng ◽  
Lihua Niu ◽  
Pei Pei ◽  
Jinqi Dong

In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed.


2021 ◽  
Vol 13 (8) ◽  
pp. 4546
Author(s):  
Kaiyue Zhao ◽  
Peng Zhang ◽  
Bing Wang ◽  
Yupeng Tian ◽  
Shanbin Xue ◽  
...  

Cement-based materials prepared with activated water induced by a magnetic field or electric field represent a possible solution to environmental issues caused by the worldwide utilization of chemical admixtures. In this contribution, electric- and magnetic-activated water have been produced. The workability and mechanical properties of cement mortar prepared with this activated water have been investigated. The results indicate that the pH and absorbance (Abs) values of the water varied as the electric and magnetic field changed, and their values increased significantly, exhibiting improved activity compared with that of the untreated water. In addition, activated water still retains activity within 30 min of the resting time. The fluidity of the cement paste prepared with electric-activated water was significantly larger than that of the untreated paste. However, the level of improvement differed with the worst performance resulting from cement paste prepared with alternating voltage activated water. In terms of mechanical properties, both compressive strength and flexural strength obtained its maximum values at 280 mT with two processing cycles. The compressive strength increased 26% as the curing time increased from 7 days to 28 days and flexural strength increased by 31%. In addition, through the introduction of magnetic-activated water into cement mortar, the mechanical strength can be maintained without losing its workability when the amount of cement is reduced.


2011 ◽  
Vol 418-420 ◽  
pp. 406-410
Author(s):  
Jun Liu ◽  
Yao Li ◽  
Dan Dan Hong ◽  
Yu Liu

Abstract. Recycled aggregate—rural building material wastes pretreated by cement mortar—are applied into concrete with different replacement rates: 0, 25%, 50%, 75%, and 100%. Results from measurements of compressive strength, cleavage tensile strength, mass loss after fast freeze-thaw cycles, and compressive strength loss indicate that a different recycled aggregate replacement rate certainly influences concrete mechanical properties and frost resistance. Recycled aggregate replacement rates less than 75% performs better than common concrete. Data from the 100% replacement rate is worse than that of rates less than 75% but still satisfy the general demands of GB standard on C30 concrete.


2009 ◽  
Vol 1242 ◽  
Author(s):  
Rivas-Vázquez L.P. ◽  
Suárez-Orduña R. ◽  
Valera-Zaragoza M. ◽  
Máas-Díaz A. De la L. ◽  
Ramírez-Vargas E.

ABSTRACTThe effects of waste polyethylene aggregate as admixture agent in Portland cement at different addition polyethylene/cement ratios from 0.0156 to 0.3903 were investigated. The reinforced samples were prepared according the ASTM C 150 Standard (samples of 5 × 5 × 5 cm). The reinforcing fibers were milling at a size of 1/25 in diameter, form waste and used them to evaluate the effects in mechanical properties in cement-based composites. The evaluation of polyethylene as additive was based on results of density and compression tests. The 28-day compressive strength of cement reforced with plastic waste at a replacement polyethylene/cement ratio of 0.0468 was 23.5 MPa compared to the control concrete (7.5 MPa). The density of cement replaced with polyethylene varies from 2.114 (0% polyethylene) to 1.83 g/cm3 by the influence of polyethylene.


Sign in / Sign up

Export Citation Format

Share Document