scholarly journals Calculation of Labyrinth Seals in the Secondary Air System of Aircraft Engine

2014 ◽  
Vol 8 (1) ◽  
pp. 424-430 ◽  
Author(s):  
Andrei Tisarev ◽  
Sergei Falaleev ◽  
Alexandr Vinogradov

The labyrinth seals perform the important functions in the aircraft engine systems operation, which aim to reduce the air leakages and the mutual system interference reduction. The calculation of the labyrinth seal characteristics is performed simply by using the analytical relationships or the modern tools of numerical analysis. However, the seal operation specificity within the system of operating engine secondary streams imposes some additional difficulties manifested in the rotor and stator elements deformation forming a gap. In this paper, we analyzed the formation cases of axis symmetric and asymmetric forms of labyrinth seal gaps. For the case of symmetrical cone gaps formation the correction factors were obtained by using the Fluent analysis to assess the seal characteristics with the conical form of the gaps, compared with the seal with cylindrical shape concentric gaps at the minimum radial clearance. The algorithm of axis symmetric seal deformation at the calculation of the engine secondary air system is described. The asymmetric components of deformations for the rotor and the high-pressure compressor housing are analyzed separately. The high rigidity of the elements contributed to the emergence of low level asymmetric deformation, allowing exclude them at the calculation of the seal characteristics.

Author(s):  
Daniel Frączek ◽  
Włodzimierz Wróblewski ◽  
Krzysztof Bochon

The aircraft engine operates in various conditions. In consequence, the design of seals must take account of the seal clearance changes and the risk of rubbing. A small radial clearance of the rotor tip seal leads to the honeycomb rubbing in take-off conditions, and the leakage flow may increase in cruise conditions. The aim of this study is to compare two honeycomb seal configurations of the low-pressure gas turbine rotor. In the first configuration, the clearance is small and rubbing occurs. In the second,—the fins of the seal are shorter to eliminate rubbing. It is assumed that the real clearance in both configurations is the same. A study of the honeycomb geometrical model is performed to reduce the computational effort. The problem is investigated numerically using the RANS equations and the two-equation k–ω SST turbulence model. The honeycomb full structure is taken into consideration to show details of the fluid flow. Main parameters of the clearance and leakage flows are compared and discussed for the rotor different axial positions. An assessment of the leakage flow through the seal variants could support the design process.


2000 ◽  
Vol 122 (2) ◽  
pp. 330-336 ◽  
Author(s):  
Hector E. Laos ◽  
John M. Vance ◽  
Steven E. Buchanan

Pocket damper seals perform a dual function: both sealing the pressurized gas around a rotating shaft and providing large amounts of vibration damping. The annular cavity between the labyrinth seal teeth is subdivided into separate annular cavities around the circumference of the rotor by partitioning walls. Also, the upstream and downstream teeth have different radial clearances to the rotor. These seals have been shown to provide a remarkable amount of direct damping to attenuate vibration in turbomachinery, but they generally leak more than conventional labyrinth seals if both seals have the same minimum clearance. Conversely, brush seals allow less than half the leakage of labyrinth seals, but published test results show no significant amount of damping. They are considered to be a primary choice for the seals in new aircraft engine designs because of their low leakage. This paper will describe a recently invented hybrid brush/pocket damper seal that combines high damping with low leakage. Previous brush seal results were studied and calculations were made to select a brush seal to combine with the pocket damper design. The result is a hybrid seal with high damping and low leakage. A special design feature can also allow active vibration control as a bonus benefit. A computer code written for the original pocket damper seal was modified to include the brush element at the exit blade. Results from the computer code indicate that the hybrid seal can have less leakage than a six bladed (or 6 knives) labyrinth seal along with orders of magnitude more damping. Experimental evaluations of the damping and leakage performance of the hybrid seal are being conducted by the authors. The experimental work reported here tested the damping capability of the new hybrid brush seal by exciting the seal journal through an impedance head. A conventional six-bladed labyrinth seal of the same working dimensions was also tested. The brush hybrid pocket damper seal is found to leak less than the labyrinth seal while producing two to three times more damping than the original pocket damper seal (orders of magnitude more than the conventional labyrinth). [S0742-4795(00)01102-9]


Author(s):  
Jinming Xu ◽  
Matthew S. Ambrosia ◽  
David L. Rhode

Unavoidable rotordynamic impacting on labyrinth seal teeth sometimes occurs when centrifugal compressors, for example, undergo transients. Consequently, the labyrinth seal teeth are damaged or disfigured in various ways when the surface opposite to the teeth is non-abradable. Thus far, no quantitative information concerning the effect on seal leakage is available. The present work focuses on the effect of seal leakage due to such permanently bent labyrinth seal teeth. The investigation was done numerically by solving the 2-D, axisymmetric RANS equations with a finite-volume algorithm. The high-Reynolds number k-ε turbulence model was used with standard wall functions. A broad variety of tooth seal bending was studied by varying the bending curvature and the length of bending, as well as the after-bend tooth radial clearance. The results show that the bending damage drastically affects the leakage as well as the flow pattern. This is due largely to the altered clearance caused by the bending. However, other bending factors, such as the bending curvature and the percentage of tooth length that is bent, also contribute to the change of leakage and flow pattern.


Author(s):  
J. Balasubramanian ◽  
N. Junnarkar ◽  
D. W. Zhou ◽  
R. P. Roy ◽  
Y. W. Kim ◽  
...  

Experiments were carried out in a model 1.5-stage (vane-blade-vane) axial-flow air turbine to investigate the ingestion of main-stream air into the aft disk cavity. This cavity features rotor and stator rim seals with radial clearance and axial overlap, and an inner labyrinth seal. Results are reported for two main air flow rates, two rotor speeds, and three purge (secondary) air flow rates. The initial step at each experimental condition was the measurement of time-average static pressure distribution in the turbine stage to ensure that a nominally steady run condition had been achieved. Subsequently, tracer gas concentration and particle image velocimetry (PIV) techniques were employed to measure, respectively, the main gas ingestion into the disk cavity (rim and inner parts) and the fluid velocity field in the rim cavity. Finally, the egress trajectory of the purge air into the main-stream air was mapped in the axial-radial plane by PIV at multiple circumferential positions within one aft vane pitch. The purge air egress trajectory and velocity field are important because the interaction of this air with the main gas stream has aerodynamic, stage performance, and downstream vane/endwall heat transfer implications.


Author(s):  
Hector E. Laos ◽  
John M. Vance ◽  
Steven E. Buchanan

Pocket damper seals perform a dual function: both sealing the pressurized gas around a rotating shaft and providing large amounts of vibration damping. The annular cavity between the labyrinth seal teeth is subdivided into separate annular cavities around the circumference of the rotor by partitioning walls. Also, the upstream and downstream teeth have different radial clearances to the rotor. These seals have been shown to provide a remarkable amount of direct damping to attenuate vibration in turbomachinery, but they generally leak more than conventional labyrinth seals if both seals have the same minimum clearance. Conversely, brush seals allow less than half the leakage of labyrinth seals, but published test results show no significant amount of damping. They are considered to be a primary choice for the seals in new aircraft engine designs because of their low leakage. This paper will describe a recently invented hybrid brush/pocket damper seal that combines high damping with low leakage. Previous brush seal results were studied and calculations were made to select a brush seal to combine with the pocket damper design. The result is a hybrid seal with high damping and low leakage. A special design feature can also allow active vibration control as a bonus benefit. A computer code written for the original pocket damper seal was modified to include the brush element at the exit blade. Results from the computer code indicate that the hybrid seal can have less leakage than a six bladed (or 6 knives) labyrinth seal along with orders of magnitude more damping. Experimental evaluations of the damping and leakage performance of the hybrid seal are being conducted by the authors. The experimental work reported here tested the damping capability of the new hybrid brush seal by exciting the seal journal through an impedance head. A conventional six-bladed labyrinth seal of the same working dimensions was also tested. The brush hybrid pocket damper seal is found to leak less than the labyrinth seal while producing two to three times more damping than the original pocket damper seal, (orders of magnitude more than the conventional labyrinth).


Author(s):  
Kali Charan Nayak ◽  
Nomesh P. Kandaswamy ◽  
Syed Faheemulla

Abstract Stepped labyrinth seals are used in multiple locations in the gas turbine with the intent to reduced leakage compared to straight labyrinth seals. However the selection of geometric factors in stepped labyrinth seals is critical to allow lower leakage in its operating envelope. Particularly the step height and axial position during the running condition play a vital role. The influence of these factors on the leakage, swirl development and windage heating in stepped labyrinth seal has not been thoroughly investigated in the previously published work. This paper focuses to study above effects with numerical simulations in a smooth four-fin stepped labyrinth seal. Specifically, a 2D axi-symmetric computational fluid dynamics (CFD) model is developed utilizing commercial finite volume-based software incorporating the standard k-ε turbulence model. Using this model, a broad parametric study is conducted by varying step height, axial position of the knife from the step, radial clearance and pressure ratio for a four-teeth stepped labyrinth seal. It has been observed that the seal leakage reduces with increase in step height to pitch ratio up to 0.35 and with further increase it tails off. The axial position of the tooth has strong influence on the flow structure and swirl development in the seal pocket.


Author(s):  
Stephen P. Arthur ◽  
Dara W. Childs

Rotordynamic and leakage data are presented for a see-through tooth-on-rotor (TOR) labyrinth seal with comparisons to a see-through tooth-on-stator (TOS) labyrinth seal. Measurements for both seals are also compared to predictions from XLLaby. Both seals have identical diameter and can be considered as relatively long labyrinth seals. The TOR seal has a length-to-diameter ratio of 0.62, whereas the TOS seal is longer and has a length-to-diameter ratio of 0.75. Both seals also differ by number of teeth, tooth height, and tooth cavity length. TOR labyrinth tests were carried out at an inlet pressure of 70 bar-a (1,015 psia), pressure ratios of 0.4, 0.5, and 0.6, rotor speeds up to 20,200 rpm, a radial clearance of 0.1 mm (4 mils), and three preswirl ratios. For comparison, TOS labyrinth tests were run at identical conditions as the TOR tests but for only one positive preswirl ratio. TOR labyrinth measurements show a pronounced dependence of rotordynamic coefficients on rotor speed, especially when compared to prior documented TOS labyrinth seal tests run at a radial clearance of 0.2 mm (8mils). The TOR labyrinth cross-coupled stiffness is higher in magnitude and increases at a higher rate than that of the TOS labyrinth across all test speeds. However, the TOR labyrinth effective damping was determined to be greater due to higher measurements of direct damping. Measured leakage rates for the TOR labyrinth were approximately 5–10% less than the TOS labyrinth. XLLaby underpredicted the rotordynamic coefficients for both seals. However, as with measurements, it predicted the TOR labyrinth to have higher effective damping than the TOS labyrinth.


Author(s):  
Aakash C. Rai ◽  
Deoras Prabhudharwadkar ◽  
Sunil Murthy ◽  
Andrew Giametta ◽  
David Johns

Labyrinth seals are used in many key sealing locations in gas turbines to control various leakage flows, e.g., to control the secondary air-flow from the compressor (bypassing the combustor), the turbine inter-stage leakages and blade tip leakages. This study was performed to assess the improvement in the performance of a labyrinth seal by using an air-curtain (cross-flow jet(s)) from the stator. Detailed parametric studies were performed to study the effect of the air-curtain jet pressure, location, and the number of jets on the seal performance with respect to the leakage flow. The analysis was done using 2-dimensional axisymmetric CFD simulations. It was found that in the case of a labyrinth seal with a flat stator (without a honeycomb attached to the stator) the air-curtain design can reduce the seal leakage by about 30% over the baseline seal design without air-curtains. This reduction happened because the air-curtain jet deflected the main seal jet away from the seal clearance. A similar conclusion was also obtained in case of a labyrinth seal with a honeycombed stator. Furthermore, our parametric studies with different air-curtain designs parameters implemented over a honeycombed labyrinth seal showed that the air-curtain jet pressure, location, and the number of jets were crucial factors governing the seal leakage. Amongst the air-curtain designs studied, it was found that implementing three air-curtains in the 1st pocket gave the maximum leakage reduction (by about 50%) over the baseline design.


2020 ◽  
Vol 10 (19) ◽  
pp. 6830
Author(s):  
Michal Čížek ◽  
Zdeněk Pátek ◽  
Tomáš Vampola

This article presents the labyrinth seal radial clearance influence. A generic labyrinth seal of a turbine aircraft engine was modeled. The target is to compare and analyze the influence of the radial clearance and location of teeth. The results can be useful for designing the location of teeth and their appropriate setting, especially for materials engineering and engineering technology in general.


Author(s):  
Hari Shrestha ◽  
Dara W. Childs ◽  
Dung L. Tran ◽  
Min Zhang

AbstractA two-phase annular-seal stand at the Turbomachinery Laboratory of Texas A&M University is utilized to experimentally investigate a labyrinth seal operating under two-phase flow conditions (a mixture of silicone oil and air). A long labyrinth seal (length-to-diameter ratio L/D = 0.75, diameter D = 114.729 mm, and radial clearance Cr = 0.213 mm) is tested at a supply pressure of 62 bars-g with inlet gas volume fraction GVFi ranging from 90 to 100%. Tests were conducted at three pressure ratios PR (0.3, 0.4, 0.5), three rotating speeds (5, 10, 15 krpm), six GVFi (90%, 92%, 94%, 96%, 98%, and 100%), and three inlet-preswirl inserts, namely, zero, medium, and high. Specifically, the ratio between the fluid's circumferential velocity and the shaft surface's velocity are in ranges of 0.0–0.2, 0.5–1.6, and 0.5–2.7 for the zero, medium, and high preswirls respectively. The direct dynamic stiffness KΩ is negative. As GVFi decreases (more liquid), KΩ becomes more negative for the zero preswirl. The effect of changing GVFi on KΩ for the medium and high preswirls is not as clear as for the zero preswirl. For the zero preswirl, as GVFi decreases, the cross-coupled dynamic stiffness kΩ and direct damping C damping increase. However, the effective damping Ceff values converge to almost the same positive value for higher frequencies. Hence, there is no significant effect of change in GVFi for the zero preswirl. For the high preswirl, as GVFi decreases, kΩ decreases and C increases. As GVFi decreases, Ceff becomes less negative and eventually becomes positive for frequencies higher than Ωc. This result indicates that at certain frequencies, the presence of liquid can make the labyrinth seals with high preswirl more stable. For the seal tested, a compressor running at 15 krpm and PR (ratio of seal exit pressure and seal inlet pressure) = 0.5 with the first critical speed of 7500 rpm (125 Hz) would experience an increase in stability with presence of liquid in the flow stream for the medium and high preswirls. However, for the range of GVFi considered here, if swirl brakes are used in a compressor application to reduce the preswirl, there would be no impact of liquid presence on the stability of the compressor. Concerning static measurements, leakage rate m˙ increases with decreases in GVFi but remains unchanged with increasing preswirl.


Sign in / Sign up

Export Citation Format

Share Document