scholarly journals Enzymatic Activity of Endophytic Bacterial Isolates from Selected Mangrove Plants in Kenya

2018 ◽  
Vol 12 (1) ◽  
pp. 354-363 ◽  
Author(s):  
Regina M. Ntabo ◽  
Anthony Kebira Nyamache ◽  
Wilber Lwande ◽  
James Kabii ◽  
James Nonoh

Introduction:Microorganisms are a preferred source of enzyme production due to their high production capability and low cost of production. Bacterial endophytes occupy unexplored sites hence they represent a new source of enzymes with diverse applications. Mangrove plants in Kenya have traditionally been used as medicinal plants due to their bioactive metabolites. However the enzymatic activity of mangrove plants associated endophytes has not been studied.Aims & Objectives:The study is aimed at bioprospecting for enzymes with potential biotechnological applications from mangrove ecosystems.Methods & Materials:Forty-two bacterial isolates were cultured and isolated from the leaves and roots of six mangrove plants sampled from Mida Creek and Gazi Bay in the coastal region of Kenya. The isolates were screened for pectinases, chitinases, cellulases, proteases, and amylases. The isolates were identified based on morphology and 16S rRNA gene sequences analysis.Results:The study showed bacterial isolates had enzymatic activity as follows; pectinases activity (69% of the isolates), Proteases (95% of the isolates), amylases activity (88% of the isolates), cellulases and chitinases (92% of the isolates each). Bacterial endophytes from leaves showed a higher enzymatic index of cellulases suggesting a potential role in degrading cellulose in the leaves of plants. The enzymes amylases and proteases were mostly exhibited by endophytes in roots suggesting a potential role in metabolizing sugar and amino acids in the roots. Isolates from the mangrove plantSonneratia albashowed highest enzymatic indices. The study also observed that isolates from mangrove plants sampled from Gazi bay had high means of enzymatic indices. Molecular identification showed the isolates were closely related toBacillus, Streptomyces, Myroides, andStaphylococcusspecies. Their respective enzymatic activities have been provided in this study.Conclusion:The study showed that Kenyan Mangrove plant-associated bacterial endophytes provide a good reservoir of enzymes with potential industrial applications.

2020 ◽  
Vol 36 (3) ◽  
Author(s):  
Mohamed Ahmed ◽  
Md. Mohibul Alam Khan ◽  
Saleh M. S. Al-Garni ◽  
Roop Singh Bora ◽  
Saleh A. Kabli

Halophilic bacteria are a microorganism that grows optimally in the presence of the very high concentration of sodium chloride. Halophiles are vital sources of various enzymes including hydrolases, which are very stable and catalytically highly efficient at high salt concentration and other extreme conditions such as high temperature, pH and presence of organic solvents.  Several hydrolases such as amylases, proteases, and lipases have been obtained from halophilic bacteria and are commonly used for various industrial applications. We initiated a screening project to isolate and characterize the halophilic bacteria from the Red Sea, which is one of the saltiest bodies of water in the world. Water and soil samples, collected from the Red Sea coast, Jeddah, Saudi Arabia, were screened for isolation of halophilic bacteria. Ten bacterial isolates were obtained, which were characterized by biochemical tests and 16S rRNA gene sequencing. Hydrolase producing bacteria among the isolates were screened by plate assay on starch and gelatin agar plates for amylase and protease, respectively.  Two bacterial isolates i.e Bacillus haynesii and Enterobacter cloacae subsp. were found to possess significant amylase and protease activity. Further characterization of both the strains is in progress.


2021 ◽  
Vol 43 (3) ◽  
pp. 125-135
Author(s):  
Ton That Huu Dat ◽  
Oanh Phung Thi Thuy

Mangrove is one of the highly productive ecosystems and contains diverse plants and microbial communities. Bacterial endophytes from mangroves are considered as a prolific source of biological molecules with important functions in the protection of mangrove plants against herbivores, insects as well as pathogens. The present study aimed to isolate endophytic bacteria from the roots of mangrove plant Rhizophora stylosa and to screen antioxidant,


2020 ◽  
Vol 11 (2) ◽  
pp. 48
Author(s):  
Chindy Achika Rori ◽  
Febby Ester Fany Kandou ◽  
Agustina Monalisa Tangapo

ABSTRAKBakteri endofit merupakan salah satu sumber penghasil senyawa ekstraseluler yaitu enzim. Enzim dari bakteri endofit lebih menguntungkan dan produksinya lebih cepat. Penelitian ini bertujuan untuk menganalisis kemampuan aktivitas enzim ekstraseluler dari bakteri endofit tumbuhan mangrove Avicennia marina. Metode penelitian yang digunakan yaitu eksploratif eksperimental, melakukan isolasi bakteri dari tumbuhan mangrove A. marina dan selanjutnya dilakukan uji potensi aktivitas enzim ekstraseluler dari isolat bakteri endofit. Hasil isolasi memperoleh tujuh isolat bakteri endofit dari tumbuhan A. marina, isolat endofit tersebut mampu menghasilkan aktivitas enzim ekstraseluler yaitu empat isolat menghasilkan enzim amilase, enam isolat menghasilkan protease, satu isolat menghasilkan selulase dan dua isolat menghasilkan gelatinase.Kata kunci: bakteri endofit; Avicennia marina; amilase; protease; selulase; gelatinase ABSTRACTEndophytic bacteria are one source that can produce extracellular compounds, namely enzymes. Enzymes from endophytic bacteria are more profitable and can produce faster. This study aims to analyze the ability of extracellular enzyme activity from endophytic bacteria in mangrove plants Avicennia marina. This research used experimental explorative method, isolating bacteria from mangrove plant A. marina and then testing the potential of enzyme extracellular activity from endophytic bacteria isolated. Isolating result obtained seven endophytic bacterial isolates from A. marina plants,this endophytic isolates are able to produce extracellular enzyme activity is four isolates can produced amylase enzyme, six isolated can produced protease, one isolated can produced cellulase and two isolated can produce gelatinase. Keywords: Endophytic bacteria; Avicennia marina; amylase, protease, cellulase, gelatinase


2018 ◽  
Vol 41 (3) ◽  
pp. 255-264 ◽  
Author(s):  
J. Abraham Pérez-Pérez ◽  
David Espinosa-Victoria ◽  
Hilda V. Silva-Rojas ◽  
Lucía López-Reyes

Bacteria are an unavoidable component of the natural earthworm diet; thus, bacterial diversity in the earthworm gut is directly linked to decomposition of organic matter and development of the surrounding plants. The aim of this research was to isolate and to identify biochemically and molecularly the culturable bacterial microbiota of the digestive tract of Eisenia foetida. Earthworms were sourced from Instituto de Reconversión Productiva y Bioenergética (IRBIO) and Colegio de Postgraduados (COLPOS), México. Bacterial isolation was carried out on plates of Brain Heart Infusion (BHI) culture medium. Fifty six and 44 bacterial isolates were obtained from IRBIO and COLPOS, respectively. The population was composed of 44 Gram-negative and 56 Gram-positive isolates. Over 50 % of the bacterial isolates were rod-shaped cells. The 16S rRNA gene was sequenced and nine genera were identified in worms from IRBIO (Bacillus, Paenibacillus, Solibacillus, Staphylococcus, Arthrobacter, Pantoea, Stenotrophomonas, Acinetobacter and Aeromonas) and six in worms from COLPOS (Bacillus, Paenibacillus, Stenotrophomonas, Staphylococcus, Acinetobacter and Aeromonas). Bacillus was the predominant genus, with eight and six species in the oligochaetes from IRBIO and COLPOS, respectively. The most represented bacteria in the worms from both sites were Bacillus sp. and B. subtilis. The predominance of Bacillus was probably due to spore formation, a reproductive strategy that ensures survival and dispersion in the soil and oligochaetes digestive tract. The gut of E. foetida not only harbored bacterial species of agronomic importance but also species potentially pathogenic for humans (Staphylococcus warneri, Pantoea agglomerans and Stentrophomonas sp.). The larger bacterial diversity in worms from IRBIO could be due to their feeding on cattle manure, which is a rich source of bacteria.


2021 ◽  
Vol 9 (7) ◽  
pp. 1448
Author(s):  
Lei Gao ◽  
Jinbiao Ma ◽  
Yonghong Liu ◽  
Yin Huang ◽  
Osama Abdalla Abdelshafy Mohamad ◽  
...  

Endophytes associated with halophytes may contribute to the host’s adaptation to adverse environmental conditions through improving their stress tolerance and protecting them from various soil-borne pathogens. In this study, the diversity and antifungal activity of endophytic bacteria associated with halophytic samples growing on the shore of the western Aral Sea in Uzbekistan were investigated. The endophytic bacteria were isolated from the nine halophytic samples by using the culture-dependent method and identified according to their 16S rRNA gene sequences. The screening of endophytic bacterial isolates with the ability to inhibit pathogenic fungi was completed by the plate confrontation method. A total of 289 endophytic bacterial isolates were isolated from the nine halophytes, and they belong to Firmicutes, Actinobacteria, and Proteobacteria. The predominant genera of the isolated endophytic bacteria were Bacillus, Staphylococcus, and Streptomyces, accounting for 38.5%, 24.7%, and 12.5% of the total number of isolates, respectively. The comparative analysis indicated that the isolation effect was better for the sample S8, with the highest diversity and richness indices. The diversity index of the sample S7 was the lowest, while the richness index of samples S5 and S6 was the lowest. By comparing the isolation effect of 12 different media, it was found that the M7 medium had the best performance for isolating endophytic bacteria associated with halophytes in the western Aral Sea Basin. In addition, the results showed that only a few isolates have the ability to produce ex-enzymes, and eight and four endophytic bacterial isolates exhibited significant inhibition to the growth of Valsa mali and Verticillium dahlia, respectively. The results of this study indicated that halophytes are an important source for the selection of microbes that may protect plant from soil-borne pathogens.


2021 ◽  
Vol 9 (8) ◽  
pp. 1642
Author(s):  
Dorothee Tegtmeier ◽  
Sabine Hurka ◽  
Sanja Mihajlovic ◽  
Maren Bodenschatz ◽  
Stephanie Schlimbach ◽  
...  

Black soldier fly larvae (BSFL) are fast-growing, resilient insects that can break down a variety of organic substrates and convert them into valuable proteins and lipids for applications in the feed industry. Decomposition is mediated by an abundant and versatile gut microbiome, which has been studied for more than a decade. However, little is known about the phylogeny, properties and functions of bacterial isolates from the BSFL gut. We therefore characterized the BSFL gut microbiome in detail, evaluating bacterial diversity by culture-dependent methods and amplicon sequencing of the 16S rRNA gene. Redundant strains were identified by genomic fingerprinting and 105 non-redundant isolates were then tested for their ability to inhibit pathogens. We cultivated representatives of 26 genera, covering 47% of the families and 33% of the genera detected by amplicon sequencing. Among these isolates, we found several representatives of the most abundant genera: Morganella, Enterococcus, Proteus and Providencia. We also isolated diverse members of the less-abundant phylum Actinobacteria, and a novel genus of the order Clostridiales. We found that 15 of the isolates inhibited at least one of the tested pathogens, suggesting a role in helping to prevent colonization by pathogens in the gut. The resulting culture collection of unique BSFL gut bacteria provides a promising resource for multiple industrial applications.


Author(s):  
O. Aleruchi ◽  
O. Obire

This investigation focuses on molecular identification of antibiotic resistant bacteria isolated from petroleum producing vicinity using 16S rRNA sequencing based technique. The bacterial 16s rRNA gene sequences were amplified using polymerase chain reaction, sequenced,  characterized and compared by using primers which has been compared to national center for biotechnology information (NCBI) sequence database. The presence of the plasmid mediated antibiotic resistance determinants CTX-M and QNRB genes in the bacterial isolates were analyzed. A total of four bacterial isolates that were resistant to all the antibiotic agents used were identified molecularly. The BLAST results showed 100 % similarity and phylogenetic study indicated that the genes were evolutionarily related to Morganella morganii, Pseudomonas xiamenensis, Chryseobacterium cucumeris and Staphylococcus sp., respectively. The genes obtained were submitted to the NCBI gene bank and were assigned accession number; MN094330, MN094331, MN094332 and MN094333, respectively. CTX-M and QNRB genes were however absent in the bacterial isolates. The result identified some peculiar abilities of the bacterial isolates to be resistant to antibiotics and suggests a correlation with resistance and hydrocarbon utilizing bacteria. The level of resistance could be as a result of the disinfection process during wastewater treatment procedure or the same adaptive mechanisms possessed by the isolates to control the hydrocarbon concentration in their cell. The study also clearly indicates that these wastewaters, when discharged into the environment directly may pose a risk for the spread of antibiotic resistant bacteria.


2007 ◽  
Vol 73 (17) ◽  
pp. 5683-5686 ◽  
Author(s):  
Dana M. Cook ◽  
Emily DeCrescenzo Henriksen ◽  
Rima Upchurch ◽  
Joy B. Doran Peterson

ABSTRACT The Tipula abdominalis larval hindgut microbial community presumably facilitates digestion of the lignocellulosic diet. The microbial community was investigated through characterization of bacterial isolates and analysis of 16S rRNA gene clone libraries. This initial study revealed novel bacteria and provides a framework for future studies of this symbiosis.


MRS Advances ◽  
2019 ◽  
Vol 4 (15) ◽  
pp. 879-887
Author(s):  
Rebecca Isseroff ◽  
Jerry Reyes ◽  
Roshan Reddy ◽  
Nicholas Williams ◽  
Miriam Rafailovich

ABSTRACTA significant drawback of enzyme use in industrial applications is its lack of stability. Graphene oxide (GO) has previously been investigated for enzyme immobilization and enhancement of enzymatic catalysis. Microbial transglutaminase (MTG) is an enzyme that is used to modify food proteins, increase durability of textiles, and crosslink hydrogels for drug delivery. We tested the effects of adding GO and partially reduced GO (pRGO) to water solutions of gelatin and then crosslinking it with MTG, measuring both the resulting gelatin modulus and then the time it took for the onset of gelation. We found that the presence of pRGO in a gelatin-MTG-water mixture (when using 0.75 g MTG in 10 ml of gelatin solution) significantly increases the modulus by 60% more than the control. Using this same concentration of MTG, we measured the onset of gelation time and found that pRGO in gelatin solution reduces the onset of gelation time by nearly 50% while inducing a very large increase in viscosity by three orders of magnitude, whereas the addition of GO increases the onset of gelation time by 33% and decreases the viscosity of the gel by more than one order of magnitude. The very large enhancement by pRGO of the viscosity may be due to pRGO’s electron withdrawing ability and/or may also be due to adsorption of gelatin to the pRGO platelets which effectively increases the crosslinking density through non-enzymatic processes assisting the enzymatic activity.


2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Yu-Xi Zhu ◽  
Zhang-Rong Song ◽  
Shi-Mei Huo ◽  
Kun Yang ◽  
Xiao-Yue Hong

ABSTRACT Most arthropod-associated bacterial communities play a crucial role in host functional traits, whose structure could be dominated by endosymbionts. The spider mite Tetranychus truncatus is a notorious agricultural pest harboring various endosymbionts, yet the effects of endosymbionts on spider mite microbiota remain largely unknown. Here, using deep sequencing of the 16S rRNA gene, we characterized the microbiota of male and female T. truncatus with different endosymbionts (Wolbachia and Spiroplasma) across different developmental stages. Although the spider mite microbiota composition varied across the different developmental stages, Proteobacteria were the most dominant bacteria harbored in all samples. Positive relationships among related operational taxonomic units dominated the significant coassociation networks among bacteria. Moreover, the spider mites coinfected with Wolbachia and Spiroplasma had a significantly higher daily fecundity and juvenile survival rate than the singly infected or uninfected spider mites. The possible function of spider-mite associated bacteria was discussed. Our results highlight the dynamics of spider mite microbiotas across different life stages, and the potential role of endosymbionts in shaping the microbiota of spider mites and improving host fitness.


Sign in / Sign up

Export Citation Format

Share Document