Assessment of Antioxidant Effect of Beta-Glucan on the Whole Blood Oxidative DNA Damage with the Comet Assay in Colorectal Cancer

2021 ◽  
Vol 14 ◽  
Author(s):  
Necla Benlier ◽  
Nilay Uçar ◽  
Eda Öğüt ◽  
Havva Yeşil Çinkir ◽  
Mustafa Yildirim ◽  
...  

Objective: The present study aims to evaluate the antioxidant effect of beta glucan on oxidative DNA damage by comet assay. Methods: A total of 19 adult females and males diagnosed with stage 3-4 colorectal cancer and a control group of 20 age-matched healthy subjects were enrolled in the study. Blood samples of the participants were analyzed using Comet Assay for the parameters of DNA damage. Results: Significantly increased DNA damage was observed in patients versus control group as indicated by greater values of tail moment, tail percent DNA and tail length. Following incubation with β-glucan, a substantial reduction was found in the aforementioned parameters of DNA damage. Comet assay revealed significant levels of endogenous DNA damage in patients as shown by remarkable increases in the tail moment, the percentage of DNA in the tail and the tail length values, in comparison with the control group. Following treatment of fresh whole blood with β-glucan incubation, DNA damages were significantly reduced but lower values were observed after β-glucan incubation in the patient group versus control group. Conclusion: β-Glucan was found to reduce DNA damage substantially in colorectal cancer patients and show antimutagenic effects. Our results suggested that dietary β-glucan intake might be important in the genesis of colorectal cancer tumors.

Author(s):  
Ahmet Cihat Öner ◽  
Adnan Ayan

This study was aimed to evaluate DNA fragmentation by using Comet assay in naturally infected sheep with Anaplasmosis before and after treatment with the Comet method, which shows DNA damage specifically. In the study, blood samples were collected from 10 Anaplosmosis infected and 10 healthy sheep. The anaplosmosis was diagnosed by clinical signs and symptoms. The infection was confirmed by Giemsa staining. The blood was collected from control group and infected group before and after the treatment, from the vena jugularis with the appropriate method. The DNA fragmentation was checked by using the Comet assay of blood cells. The data were analysed throught ANNOVA one-way. The result showed higher DNA fragmentation in sick animals diagnosed with anaplasmosis; tail length and tail moment values were found to be statistically significantly higher than the control group. When the data obtained after imidocarb (IMD) application were compared with obtained during the disease, a decreased DNA damage and tail moment was determined, however, these values higher than control. In this study, DNA damage and the extent of this damage were investigated by the Comet assay method using a healthy control group before and after treatment in animals with Anaplasmosis. When the findings obtained from the study were evaluated, it was seen that Anaplasma agents caused DNA damage and with the imidocarb application given for treatment, DNA damage was reduced and results close to healthy individuals were obtained.


Author(s):  
Rafael Valencia-Quintana ◽  
Rosa María López-Durán ◽  
Mirta Milić ◽  
Stefano Bonassi ◽  
Ma. Antonieta Ochoa-Ocaña ◽  
...  

Pesticides have been considered as potential chemical mutagens; however, little is known about toxic and genotoxic effects during pesticide application in Zamora-Jacona, Michoacan State in Mexico. This study sought to determine DNA damage and cholinesterase activities inhibitions in 54 agricultural workers exposed to complex mixtures of pesticides vs. control group (26 individuals) using Comet assay in peripheral whole blood, micronucleus (MN) test in oral mucosa cells, Cytokinesis-blocked MN assay in lymphocytes (L-CBMNcyt) and measuring AChE and BChE activities in whole blood and plasma samples, respectively. Exposed subjects demonstrated significantly elevated levels of primary (Comet assay: tail intensity, tail length, tail moment, Olive tail moment) and permanent DNA damage (MN assay: in blood/buccal cells; frequencies of nuclear buds, binucleated cells, cells with condensed chromatin, karyorrhexis, pyknosis, and karyolysis). However, inhibition of cholinesterase activities (AChE and BChE) was not observed in the workers. Confounding factors including sex, age, BMI, working exposure period, protection level, smoking habit (cigarettes per day units), alcohol consumption (weekly), medication, were considered in the analysis. These combined techniques demonstrated usefulness in the health hazards risks pesticide exposure assessment and suggested the need for periodic monitoring together with the education and the training of occupational workers for the safe application of potentially harmful pesticides.


2018 ◽  
Vol 90 (2) ◽  
pp. 13-15 ◽  
Author(s):  
Jacek Kabzinski ◽  
Anna Walczak ◽  
Adam Dziki ◽  
Michał Mik ◽  
Ireneusz Majsterek

As a result of reactive oxygen species operation, cell damage occurs in both cellular organelles and molecules, including DNA. Oxidative damage within the genetic material can lead to accumulation of mutations and consequently to cancer transformation. OGG1 glycosylase, a component of the Base Excision Repair (BER) system, is one of the enzymes that prevents excessive accumulation of 8-oxoguanine (8-oxG), the most common compound formed by oxidative DNA damage. In case of structural changes of OGG1 resulting from polymorphic variants, we can observe a significant increase in the concentration of 8-oxG. Linking individual polymorphisms to DNA repair systems with increased risk of colorectal cancer will allow patients to be classified as high risk and included in a prophylactic program. The aim of the study was to determine the level of oxidative DNA damage and to analyze the distribution of Ser326Cys polymorphism of the OGG1 gene in a group of patients with colorectal cancer and in a control group in the Polish population. Material and methodology. DNA was isolated from the blood of 174 patients with colorectal cancer. The control group consisted of 176 healthy individuals. The level of oxidative damage was determined by analyzing the amount of 8-oxguanine using the HT 8-oxo-dG ELISA II Kit. Genotyping was performed via the TaqMan method. Results. The obtained results indicate that Ser326Cys polymorphism of the OGG1 gene increases the risk of RJG and is associated with significantly increased levels of 8-oxoguanine. Conclusions. Based on the results obtained, we conclude that Ser326Cys polymorphism of the OGG1 gene may modulate the risk of colorectal cancer by increasing the level of oxidative DNA damage.


2019 ◽  
Vol 12 (2) ◽  
pp. 163-172 ◽  
Author(s):  
D. Rašić ◽  
D. Želježić ◽  
N. Kopjar ◽  
D. Kifer ◽  
M. Šegvić Klarić ◽  
...  

The study aimed to check whether ochratoxin A (OTA) and citrinin (CIT) increase DNA damage in the kidney and liver of male Wistar rats (alkaline comet assay), clarify the oxidative nature of DNA damage (hOGG1-modified comet assay), and verify whether resveratrol (RSV) could ameliorate OTA+CIT-induced genotoxicity. Rats were treated orally with OTA (0.125 and 0.250 mg/kg bodyweight (bw)) and CIT (2 mg/kg bw), OTA+CIT combinations and OTA+CIT+RSV (0.250+2+20 mg/kg bw) for 21 days. Both alkaline and hOGG1-modified comet assay showed that DNA damage was more severe in rat kidneys than in liver following mycotoxin treatment. Alkaline comet assay revealed a higher intensity of DNA damage, particularly as measured by tail intensity in the kidneys. Both tail length and tail intensity were OTA dose-dependent, but in combined OTA+CIT treatment these values were similar to CIT alone and lower than in animals treated with single OTA, possibly due to induction of apoptosis. hOGG1-modified comet showed that OTA+CIT evoked greater oxidative DNA damage than single mycotoxins. RSV did not reduce DNA damage measured by alkaline comet assay, but hOGG1-modified comet showed that RSV ameliorated OTA+CIT genotoxicity in the kidneys. Apart from oxidative stress, other mechanisms of DNA damage are involved in OTA and CIT genotoxicity. In rat kidneys RSV can reduce but not overcome oxidative DNA damage induced by combined OTA and CIT.


2010 ◽  
Vol 30 (9) ◽  
pp. 1297-1302
Author(s):  
Tao Zhang ◽  
Jiye Hu ◽  
Yuchao Zhang ◽  
Qianfei Zhao ◽  
Jun Ning

JS-118 is an extensively used insecticide in China. The present study investigated the genotoxic effect of JS-118 on whole blood at 24, 48, 72 and 96 h by using alkaline comet assay. Male Kunming mice were given 6.25, 12.5, 25, 50 and 100 mg/kg BW of JS-118 intraperitoneally. A statistically significant increase in all comet parameters indicating DNA damage was observed at 24 h post-treatment ( p < 0.05). A clear concentration-dependent increase of DNA damage was revealed as evident by the OTM (arbitrary units), tail length (µm) and tail DNA (%). From 48 h post-treatment, a gradual decrease in mean comet parameters was noted. By 96 h of post-treatment, the mean comet tail length reached control levels indicating repair of damaged DNA. This study on mice showed different DNA damage depending on the concentration of JS-118 and the period of treatment. The present study provided further information of the potential risk of the genetic damage caused by JS-118.


2018 ◽  
Vol 76 (3) ◽  
pp. 115-124 ◽  
Author(s):  
Puthan Variyam Vidya ◽  
Kumari Chidambaran Chitra

Abstract The purpose of the present study is to extend knowledge on the adverse effects of nanoparticles by evaluating genotoxicity as environmental risk assessment in Oreochromis mossambicus. Fish were exposed to sublethal concentrations of the selected nanoparticles, namely silicon dioxide (SiO2NPs-12mg/L), aluminium oxide (Al2O3NPs-4mg/L), titanium dioxide (TiO2NPs-16.4mg/L) and iron oxide (Fe3O4NPs-15mg/L) for short-term (24, 72 and 96 h) and long-term durations (15, 30 and 60 days). Genetic damages such as cytoplasmic, nuclear and DNA damage were measured in the erythrocytes of fish by using standard genotoxicity tests such as micronucleus test and comet assay. The frequencies of micronuclei along with nuclear and cytoplasmic abnormalities were scored and compared with the control group. The intensity of micronuclei along with other nuclear and cytoplasmic anomalies are found to be increased significantly (p<0.05) in time-dependent manner in all exposure groups when compared to the control group, thereby indicating chromosomal damage as a result of contact with nanoparticles. The tail length and percent of tail DNA within the comet significantly (p<0.05) increased in time-dependant manner after exposure to all nanoparticles, demonstrating an increase in DNA damage. Taken together, by using micronucleus test and comet assay, it is evident that the selected nanoparticles at sublethal concentrations induced genetic damage in Oreochromis mossambicus.


2014 ◽  
Vol 8 (2) ◽  
pp. 5-10
Author(s):  
Amel J. Mutter ◽  
Abdulsahib K. Ali ◽  
Abdullah A. K. ◽  
Haider Y. L. ◽  
Ali H. F

The present study aims to use the biological techniques in a genotoxicity assessment of DNA damage in peripheral lymphocytes of radiation workers at Al-Tuwaitha site due to decommissioning to radioactive contamination as a result of work during January 2010 to December 2011. The subjects were divided into two groups: (i) 85 workers from radiation workers at Al-Tuwaitha site; (ii) 50 controls were matched non-smoking and no alcohol drink. Fresh blood samples were collected from the workers and controls. Four genetic parameter were studied using the micronucleus (MN) test, nuclear division index (NDI) test, the comet assay and hypoxanthine guanine phosphoribosyl transferase (HPRT) mutation assay. The results of the MN test showed that the average of MN per cell (Mean ± SE) in workers were 0.025 ± 0.0016 MN/ cells, which were significantly higher than those 0.010 ± 0.0006 MN/ cells in controls P< 0.01. While, the results of NDI test the average of NDI (Mean ± SE) in workers were 1.154 ± 0.0089 when compared with the control 1.322 ± 0.0117, which were significant increase p<0.01. It was found in the comet assay that the mean tail length (Mean ± SE) of radiation workers and controls were 17.69 ± 0.23 µm and 14.05 ± 0.13 µm, respectively. There was a significant difference between radiation workers and controls for mean tail length P < 0.01, but the difference between the mean tail moment (Mean ± SE) 14.22 ±0.21 of workers and mean tail moment 12.96± 0.15 of controls was not significant P> 0.01. Mean while, the results of the average of mutation frequency for HPRT were no significant differences rate for radiation workers compared with the control group P> 0.01. In conclusion, the results of our experiment suggest that the accumulation of genetic damage is detectable in peripheral lymphocytes of radiation workers at Al-Tuwaitha site. Also, the current results of frequency MN and NDI within of normal values according of the technical report of International Atomic Energy Agency (IAEA) No. 405, 2001.


Author(s):  
Banu Aykanat ◽  
Gonca Cakmak Demircigil ◽  
Kibriya Fidan ◽  
Necla Buyan ◽  
Kaan Gulleroglu ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2609
Author(s):  
Guifeng Wang ◽  
Keiichi Hiramoto ◽  
Ning Ma ◽  
Nobuji Yoshikawa ◽  
Shiho Ohnishi ◽  
...  

Glycyrrhizin (GL), an important active ingredient of licorice root, which weakens the proinflammatory effects of high-mobility group box 1 (HMGB1) by blocking HMGB1 signaling. In this study, we investigated whether GL could suppress inflammation and carcinogenesis in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced murine model of colorectal cancer. ICR mice were divided into four groups (n = 5, each)—control group, GL group, colon cancer (CC) group, and GL-treated CC (CC + GL) group, and sacrificed after 20 weeks. Plasma levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured using an enzyme-linked immunosorbent assay. The colonic tissue samples were immunohistochemically stained with DNA damage markers (8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxy-guanosine), inflammatory markers (COX-2 and HMGB1), and stem cell markers (YAP1 and SOX9). The average number of colonic tumors and the levels of IL-6 and TNF-α in the CC + GL group were significantly lower than those in the CC group. The levels of all inflammatory and cancer markers were significantly reduced in the CC + GL group. These results suggest that GL inhibits the inflammatory response by binding HMGB1, thereby inhibiting DNA damage and cancer stem cell proliferation and dedifferentiation. In conclusion, GL significantly attenuates the pathogenesis of AOM/DSS-induced colorectal cancer by inhibiting HMGB1-TLR4-NF-κB signaling.


2000 ◽  
Vol 118 (4) ◽  
pp. A1097
Author(s):  
Amr S. Soliman ◽  
Donghui Li ◽  
Melissa L. Bondy ◽  
Bernard Levin

Sign in / Sign up

Export Citation Format

Share Document