scholarly journals Variations of Micropores in Oil Reservoir Before and After Strong Alkaline Alkaline-surfactant-polymer Flooding

2016 ◽  
Vol 9 (1) ◽  
pp. 257-267
Author(s):  
Yongqiang Bai ◽  
Yang Chunmei ◽  
Liu Mei ◽  
Jiang Zhenxue

Enhanced oil recovery (EOR) provides a significant contribution for increasing output of crude oil. Alkaline-surfactant-polymer (ASP), as an effective chemical method of EOR, has played an important role in advancing crude oil output of the Daqing oilfield, China. Chemical flooding utilized in the process of ASP EOR has produced concerned damage to the reservoir, especially from the strong alkali of ASP, and variations of micropore structure of sandstones in the oil reservoirs restrain output of crude oil in the late stages of oilfield development. Laboratory flooding experiments were conducted to study sandstones’ micropore structure behavior at varying ASP flooding stages. Qualitative and quantitative analysis by cast thin section, scanning electric microscopy (SEM), atomic force microscopy (AFM) and electron probe X-Ray microanalysis (EPMA) explain the mechanisms of sandstones’ micropore structure change. According to the quantitative analysis, as the ASP dose agent increases, the pore width and pore depth exhibit a tendency of decrease-increase-decrease, and the specific ASP flooding stage is found in which flooding stage is most affective from the perspective of micropore structures. With the analysis of SEM images and variations of mineral compositions of samples, the migration of intergranular particles, the corrosions of clay, feldspar and quartz, and formation of new intergranular substances contribute to the alterations of sandstone pore structure. Results of this study provide significant guidance for further application to ASP flooding.

SPE Journal ◽  
2009 ◽  
Vol 15 (01) ◽  
pp. 184-196 ◽  
Author(s):  
Adam K. Flaaten ◽  
Quoc P Nguyen ◽  
Jieyuan Zhang ◽  
Hourshad Mohammadi ◽  
Gary A. Pope

Summary Alkaline/surfactant/polymer (ASP) flooding using conventional alkali requires soft water. However, soft water is not always available, and softening hard brines may be very costly or infeasible in many cases depending on the location, the brine composition, and other factors. For instance, conventional ASP uses sodium carbonate to reduce the adsorption of the surfactant and generate soap in-situ by reacting with acidic crude oils; however, calcium carbonate precipitates unless the brine is soft. A form of borax known as metaborate has been found to sequester divalent cations such as Ca++ and prevent precipitation. This approach has been combined with the screening and selection of surfactant formulations that will perform well with brines having high salinity and hardness. We demonstrate this approach by combining high-performance, low-cost surfactants with cosurfactants that tolerate high salinity and hardness and with metaborate that can tolerate hardness as well. Chemical formulations containing surfactants and alkali in hard brine were screened for performance and tolerance using microemulsion phase-behavior experiments and crude at reservoir temperature. A formulation was found that, with an optimum salinity of 120,000 ppm total dissolved solids (TDS), 6,600 ppm divalent cations, performed well in corefloods with high oil recovery and almost zero final chemical flood residual oil saturation. Additionally, chemical formulations containing sodium metaborate and hard brine gave nearly 100% oil recovery with no indication of precipitate formation. Metaborate chemistry was incorporated into a mechanistic, compositional chemical flooding simulator, and the simulator was then used to model the corefloods. Overall, novel ASP with metaborate performed comparably to conventional ASP using sodium carbonate in soft water, demonstrating advancements in ASP adaptation to hard, saline reservoirs without the need for soft brine, which increases the number of oil reservoirs that are candidates for enhanced oil recovery using ASP flooding.


SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 32-54 ◽  
Author(s):  
Aboulghasem Kazemi Korrani ◽  
Kamy Sepehrnoori ◽  
Mojdeh Delshad

Summary Mechanistic simulation of alkaline/surfactant/polymer (ASP) flooding considers chemical reactions between the alkali and the oil to form in-situ soap and reactions between the alkali and the minerals and brine. A comprehensive mechanistic modeling of such process remains a challenge, mainly caused by the complicated ASP phase behavior and the complexity of geochemical reactions that occur in the reservoir. Because of the lack of the microemulsion phase and/or lack of reactions that may lead to the consumption of alkali and resulting lag in the pH, a simplified ASP phase behavior is often used. A state-of-the-art geochemical package, IPhreeqc, of the United States Geological Survey was coupled with UTCHEM, an in-house research chemical-flooding reservoir simulator developed at The University of Texas at Austin (UT), for a robust, flexible, and accurate integrated tool to mechanistically model ASP floods. UTCHEM has a comprehensive three-phase (water, oil, microemulsion) flash package for the mixture of surfactant and soap as a function of salinity, temperature, and cosolvent concentration. Through this integrated tool, we are able to simulate homogeneous and heterogeneous (mineral dissolution/precipitation), irreversible, surface complexation, and ion exchange reactions under nonisothermal, nonisobaric, and both local-equilibrium and kinetic conditions. Italic words are defined in Appendix A. IPhreeqc has rich databases of chemical species and also the flexibility to include the alkaline reactions required for modeling ASP floods. Hence, to the best of our knowledge, for the first time, the important aspects of ASP flooding are considered. An algorithm is presented for modeling the geochemistry in an implicit-in-pressure-and-explicit-in-concentration solution algorithm. Finally, we show how to apply the integrated tool, UTCHEM-IPhreeqc, to match three different reaction-related chemical-flooding processes: ASP flooding in an acidic active crude oil, ASP flooding in a nonacidic crude oil, and alkaline/cosolvent/polymer flooding.


2009 ◽  
Vol 12 (05) ◽  
pp. 713-723 ◽  
Author(s):  
Adam Flaaten ◽  
Quoc P. Nguyen ◽  
Gary A. Pope ◽  
Jieyuan Zhang

Summary We present a systematic study of laboratory tests of alternative chemical formulations for a chemical flood design and application. Aqueous and microemulsion phase behavior tests have previously been shown to be a rapid, inexpensive, and highly effective means to select the best chemicals and minimize the need for relatively expensive coreflood tests. Microemulsion phase behavior testing was therefore conducted using various combinations of surfactants, cosolvents, and alkalis with a particular crude oil and in reservoir conditions of interest. Branched alcohol propoxy sulfates and internal olefin sulfonates showed high performance in these tests, even when mixed with both conventional and novel alkali agents. Systematic screening methods helped tailor and fine tune chemical mixtures to perform well under the given design constraints. The best chemical formulations were validated in coreflood experiments, and compared in terms of both oil recovery and surfactant retention in cores. Each of the four best formulations tested in corefloods gave nearly 100% oil recovery and very low surfactant adsorption. The two formulations with conventional and novel alkali agents gave almost zero surfactant retention. In standard practice, soft water must be used with alkali, but we show how alkali-surfactant-polymer (ASP) flooding can be used in this case even with very hard saline brine. Introduction Many mature reservoirs under waterflood have low economic production rates despite having as much as 50 to 75% of the original oil still in place. These reservoirs are viable candidates for chemical enhanced oil recovery (EOR) that uses both surfactant to reduce oil/water interfacial tension (IFT) and polymer to improve sweep efficiency. However, designing these aqueous chemical mixtures is complex and must be tailored to the reservoir rock and fluid (i.e., crude oil and formation brine) properties of the application. The early success of a systematic laboratory approach to low-cost, high performance chemical flooding depends on the efficiency of designing a formula for coreflood injection in accordance with sound evaluation criteria. A general, a three-stage procedure has been developed previously to screen hundreds of potential chemicals (i.e., surfactant, cosurfactant, cosolvent, alkali, polymer, and electrolytes), and arrive at a mixture having good recovery of residual oil in cores (Jackson 2006; Levitt 2006; Levitt et al. 2006). Additionally, furthering laboratory and field-testing in this area contributes to an expanding research database to help broaden reservoir types that can become candidates for routine chemical EOR application. This paper describes a systematic laboratory approach to low cost, high performance chemical flooding, and explores novel approaches to ASP flooding in reservoirs containing very hard saline brines. The design strategy first uses microemulsion phase behavior experiments to quickly select and optimize concentrations of injected chemicals. Assessment of formula optimization strategies are carried out through varying surfactant-to-cosurfactant ratio, reducing cosolvent concentration, reducing total surfactant concentration, selecting a suitable alkali, and using formation brine in the injection mixture. Formulations performing well in phase behavior are validated in coreflood experiments that adhere to necessary design criteria such as pressure and salinity gradients, surfactant adsorption, and capillary effects. We illustrate the application of our design approach in prepared Berea sandstone cores previously waterflooded with very hard saline brine, and show how ASP flooding can use some of the same brine in the chemical formulation. Conventional ASP flooding requires soft water that may not always be available, and softening hard brines can be very costly or infeasible in many cases depending on the location and other factors. These new results demonstrate high tolerance to both salinity and hardness of the high performance surfactants, and how novel alkalis--in particular sodium metaborate--can provide similar benefits in such harsh environments as sodium carbonate has shown in environments without divalent cations. This experimental success begins to vastly increase the range of conditions for economical EOR using chemicals.


2021 ◽  
Author(s):  
Marisely Urdaneta

Abstract This paper aims to address calibration of a coreflood Alkali Surfactant Polymer (ASP) formulation experiment through parametrization of fluid-fluid and rock-fluid interactions considering cation exchange capacity and by rock to guide an ASP pilot design. First of all, a series of chemical formulation experiments were studied in cores drilled from clastic reservoir so that displacement lab tests were run on linear and radial cores to determine the potential for oil recovery by ASP flooding and recommended the chemical formulation and flooding schemes, in terms of oil recovery. Therefore, to simulate the process, those tests performed with radial core injection were taken, because this type of test has a better representation of the fluid flow in reservoir, the fluids are injected by a perforation in the center of the core, moving in a radial direction the fluids inside the porous medium. Subsequently, displaced fluids are collected on the periphery of the core carrier and stored in graduated test tubes. The recommended test was carried out to the phase of numerical simulation and historical matching. Reservoir simulation is one of the most important tools available to predict behavior under chemical flooding conditions and to study sensitivities based on cost-effective process implementation. Then, a radial core simulation model was designed from formulation data with porosity of 42.6%, a pore volume (PV) of 344.45 ml, radius of 7.17 cm and weight of 1225.84 g. The initial oil saturation was 0.748 PV (257.58 ml), with a critical water saturation of 0.252 PV (86.78 ml). For the simulation model historical matching, adjustments were made until an acceptable comparison was obtained with laboratory test production data through parameterization of relative permeability curves, chemical adsorption parameters, polymer viscosity, among others; resulting in an accumulated effluents production mass 37% greater for alkali than obtained in the historical, regarding to surfactant the deviation was 8% considered acceptable and for the polymer the adjustment was very close. For the injector well bottom pressure, the viscosity ratio of the mixture was considered based on the polymer concentration and the effect of the shear rate on the viscosity of the polymer as well as the effect of salinity in the alkali case. Finally, a calibrated coreflood numerical simulation model was obtained for ASP flooding to design an ASP Pilot with a residual oil saturation of 0.09 PV (31 ml) meaning 64% more recovered oil compared to a waterflooding case.


2020 ◽  
Vol 10 (11) ◽  
pp. 3752 ◽  
Author(s):  
Shabrina Sri Riswati ◽  
Wisup Bae ◽  
Changhyup Park ◽  
Asep K. Permadi ◽  
Adi Novriansyah

This paper presents a nonionic surfactant in the anionic surfactant pair (ternary mixture) that influences the hydrophobicity of the alkaline–surfactant–polymer (ASP) slug within low-salinity formation water, an environment that constrains optimal designs of the salinity gradient and phase types. The hydrophobicity effectively reduced the optimum salinity, but achieving as much by mixing various surfactants has been challenging. We conducted a phase behavior test and a coreflooding test, and the results prove the effectiveness of the nonionic surfactant in enlarging the chemical applicability by making ASP flooding more hydrophobic. The proposed ASP mixture consisted of 0.2 wt% sodium carbonate, 0.25 wt% anionic surfactant pair, and 0.2 wt% nonionic surfactant, and 0.15 wt% hydrolyzed polyacrylamide. The nonionic surfactant decreased the optimum salinity to 1.1 wt% NaCl compared to the 1.7 wt% NaCl of the reference case with heavy alcohol present instead of the nonionic surfactant. The coreflooding test confirmed the field applicability of the nonionic surfactant by recovering more oil, with the proposed scheme producing up to 74% of residual oil after extensive waterflooding compared to 51% of cumulative oil recovery with the reference case. The nonionic surfactant led to a Winsor type III microemulsion with a 0.85 pore volume while the reference case had a 0.50 pore volume. The nonionic surfactant made ASP flooding more hydrophobic, maintained a separate phase of the surfactant between the oil and aqueous phases to achieve ultra-low interfacial tension, and recovered the oil effectively.


2014 ◽  
Vol 556-562 ◽  
pp. 603-606
Author(s):  
Qing Ji Wang

Alkaline/surfactant/polymer (ASP) flooding has been applied to oil extraction in Daqing oilfield in several years. It is a great technology to improve oil recovery after polymer flooding. However, the agent would produce lots of fluid compositions, including a lot of polymer, alkaline and surfactant chemicals, which can improve the output of crude oil but increase the difficulty to disposal, such as fluid emulsion serious, smaller oil bead particle size and higher sewage viscosity and so on. An efficient demulsifier is urgent researched. In the paper, some development and application of common emulsifiers were introduced, including Quaternary ammonium salt of demulsifier, Amine polyether demulsifiercess and Water-oil separation agent Drows-1. It is significance to research the efficient green environmental protection demulsifier, which will decrease environmental pollution and increase sewage treatment efficiency in future.


2013 ◽  
Vol 59 (4) ◽  
pp. 32-38 ◽  
Author(s):  
Michal Porzer ◽  
Petr Bujok ◽  
Martin Klempa ◽  
Petr Pánek

Abstract This paper focuses on the field of enhanced oil recovery by means of a chemical flooding of oil deposit especially a surfactant flooding method. The main objective is the application of the aforementioned method at the Czech oil deposit Ždánice - Miocene which bears the crude oil of significant viscosity and gravity that does not allow conventional production methods to be used. We evaluated the performance of various surfactants in the laboratory environment by simulating oil recovery processes


1982 ◽  
Vol 22 (04) ◽  
pp. 472-480 ◽  
Author(s):  
S.L. Enedy ◽  
S.M. Farouq Ali ◽  
C.D. Stahl

Abstract This investigation focused on developing an efficient chemical flooding process by use of dilute surfactant/polymer slugs. The competing roles of interfacial tension (IFT) and equivalent weight (EW) of the surfactant used, as well as the effect of different types of preflushes on tertiary oil recovery, were studied. Volume of residual oil recovered per gram of surfactant used was examined as a function of these variables and slug size. Tertiary oil recovery increased with an increase in the dilute surfactant slug size and buffer viscosity. However, low IFT does not ensure high oil recovery. An increase in surfactant EW used actually can lead to a decrease in oil recovery. Tertiary oil recovery was also sensitive to preflush type. Reasons for the observed behavior are examined in relation to the surfactant properties as well as to adsorption and retention. Introduction Two approaches are being used in development of surfactant /polymer-type chemical floods:a small-PV slug of high surfactant concentration, ora large-PV slug of low surfactant concentration. This study deals with the latter-i.e., dilute aqueous slugs (with polymer added in many cases) containing less than or equal 2.0 wt% sulfonates and about 0. 1 wt% crude oil. Because the dilute slug contains little of the dispersed phase, an aqueous surfactant slug usually is unable to displace the oil miscibly; however, residual brine is miscible with the slug if the inorganic salt concentration is not excessive. The dilute, aqueous petroleum sulfonate slug lowers the oil/water IFT. overcoming capillary forces. This process commonly is referred to as locally immiscible oil displacement. Objectives The objective of this work was to develop an efficient dilute surfactant/polymer slug for the Bradford crude with a variety of sulfonate combinations. Effects of varying the slug characteristics such as equivalent weight, IFT, salt concentration, etc. on tertiary oil recovery were examined. Materials and Experimental Details The petroleum sulfonates and the dilute slugs used in this study are listed in Tables 1 and 2, respectively. The crude oil tested was Bradford crude 144 degrees API (0.003 g/cm3), 4 cp (0.004 Pa.s)]. The polymer solutions were prefiltered and driven by brines of various concentrations (0.02, 1.0, and 2.0% NACl). In many cases, the polymer was added to the slug. Conventional coreflood equipment described in Ref. 3 was used. Berea sandstone cores (unfired) 2 in, (5 cm) in diameter and 4 ft (1.3 m) in length were used for all tests, with a new core for each test. Porosity ranged from 19.3 to 21.0%, permeability averaged 203 md, and the waterflood residual oil saturation averaged 33.1%. IFT's were measured by the spinning drop method. Viscosities were measured with a Brookfield viscosimeter and are reported here for 6 rpm (0.1 rev/s). The dilute slugs containing polymer exhibited non-Newtonian behavior. Without polymer the behavior was Newtonian. Sulfonate concentration in the oleic phase was determined by an infrared spectrophotometer, while the concentration in the aqueous phase was measured by ultraviolet (UV) absorbance analysis. Discussion of Results Slug development in this investigation was an evolutionary process. Dilute slugs were developed and core tested in a sequential manner (Table 2). Slugs 100 through 200 yielded insignificant ternary oil recoveries (largely because of excessive adsorption and retention), but the results helped determine improvements in slug compositions and in the overall chemical flood. This paper gives results for the more efficient slugs only. SPEJ P. 472^


2020 ◽  
Vol 11 ◽  
Author(s):  
Guoling Ren ◽  
Jinlong Wang ◽  
Lina Qu ◽  
Wei Li ◽  
Min Hu ◽  
...  

Polymer flooding technology and alkaline-surfactant-polymer (ASP) flooding technology have been widely used in some oil reservoirs. About 50% of remaining oil is trapped, however, in polymer-flooded and ASP-flooded reservoirs. How to further improve oil recovery of these reservoirs after chemical flooding is technically challenging. Microbial enhanced oil recovery (MEOR) technology is a promising alternative technology. However, the bacterial communities in the polymer-flooded and ASP-flooded reservoirs have rarely been investigated. We investigated the distribution and co-occurrence patterns of bacterial communities in ASP-flooded and polymer-flooded oil production wells. We found that Arcobacter and Pseudomonas were dominant both in the polymer-flooded and ASP-flooded production wells. Halomonas accounted for a large amount of the bacterial communities inhabiting in the ASP-flooded blocks, whereas they were hardly detected in the polymer-flooded blocks, and the trends for Acetomicrobium were the opposite. RDA analysis indicated that bacterial communities in ASP-flooded and polymer-flooded oil production wells are closely related to the physical and chemical properties, such as high salinity and strong alkaline, which together accounted for 56.91% of total variance. Co-occurrence network analysis revealed non-random combination patterns of bacterial composition from production wells of ASP-flooded and polymer-flooded blocks, and the ASP-flooded treatment decreased bacterial network complexity, suggesting that the application of ASP flooding technology reduced the tightness of bacterial interactions.


2009 ◽  
Vol 17 (6) ◽  
pp. 347-351 ◽  
Author(s):  
Yang Xu ◽  
Ning Wu ◽  
Qufu Wei ◽  
Libo Chu

Titanium dioxide (TiO2) functional films were deposited on the surface of polyester nonwoven fabrics at room temperature by direct current (DC) reactive magnetron sputtering. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were employed to study the topographies and chemical compositions of the functional fabric surfaces, respectively. Scanning electron microscopy (SEM) was used to investigate the interfacial microstructures and adhesion between the substrate and TiO2 coating. The AFM observations indicated that there was a significant difference in the surface morphology of the polyester fibres before and after TiO2 sputter coating. XPS spectra reflected the chemical features of the deposited TiO2 nanostructures. The SEM images showed that TiO2 thin films deposited on the substrate under confirmed processing conditions had unique, fine surfaces and good adhesion to the substrate. It was found that the deposition of TiO2 on the polyester nonwoven fabrics significantly improved their ultraviolet (UV) absorption and antistatic properties.


Sign in / Sign up

Export Citation Format

Share Document