Investigation of Structural and Thermoelectric Properties of Bismuth Selenide Thin Films

2020 ◽  
Vol 10 ◽  
Author(s):  
Harsha Sharma ◽  
Yogesh Chandra Sharma

Background: Thermoelectric material with high performance and low cost is the basic need of today. Bismuth selenide is a thermoelectric material. A set of bismuth selenide thin films having different stoichiometry ratio varying Bi/Se ratio from 0.123 to 0.309 have been prepared. Objective: Present work deals with the synthesis and characterization of various thin films of bismuth selenide. Thermoe-lectric properties of thin films were also investigated. Aim of this work is to investigate the effect of composition ratio on the structural and thermoelectric properties and to find out the best stoichiometry ratio of bismuth selenide thin films which can be used in application of thermoelectric devices. Method: The set of bismuth selenide thin films having different elemental compositions were prepared by employing thermal evaporation technique. Crystal structure and elemental composition of thin films were investigated by XRD and EDAX respectively. Roughness of films were analysed by AFM. Thermoelectric properties of various thin films were al-so measured. Results: XRD spectrum confirms the formation of phases formed in thin films which slightly matched with standard data. AFM results indicate that surface of films are smooth and nanoparticles are generated on surface. AFM results indicate that the surfaces of annealed thin films are smoother than as-deposited thin films. Seebeck coefficient found negative throughout the temperature rang. Power factor is also calculated by Seebeck coefficient and results reveal effect of com-position ratio on Seebeck coefficient , electrical conductivity and power factor. Thin films having the composition ratio of 0.182 exhibited the highest power factor. Conclusion: This study provides relevant basic information of the thermoelectric property of thin films. As well as pre-sents the effect of compositional variation on thermoelectric measurements. From the application point of view in the thermoelectric devices the best stoichiometric thin films out of four prepared thin films have been presented.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jyun-Min Lin ◽  
Ying-Chung Chen ◽  
Chi-Pi Lin

Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.


RSC Advances ◽  
2020 ◽  
Vol 10 (24) ◽  
pp. 14415-14421
Author(s):  
Changhoon Lee ◽  
Sujee Kim ◽  
Won-Joon Son ◽  
Ji-Hoon Shim ◽  
Myung-Hwan Whangbo

The ternary selenides A2Sb4Se8 (A = K, Rb, Cs) are predicted to be a high-performance n-type thermoelectric material, and the conformationally-flexible Sb–Se(2)–Se(2)–Sb bridges are crucial in determining the thermoelectric properties of A2Sb4Se8.


2012 ◽  
Vol 538-541 ◽  
pp. 154-157
Author(s):  
Peng Juan Liu ◽  
Ping Fan ◽  
Zhuang Hao Zheng ◽  
Dong Ping Zhang ◽  
Xing Min Cai ◽  
...  

Antimony (Sb) and zinc (Zn) bilayer was sputter-deposited at room temperature with various Zn contents by ion-beam sputtering and transformed into Antimony zinc after post thermal annealed at 573K for 60 min. A power factor of 6.18×10-4 W/mK2 at 473 K has been obtained when the sputtering time of the Zn was 20 minutes. The maximum Seebeck coefficient is 42.0 μVK-1. Composition analysis shows that the compound of SbZn is achieved and the small Seebeck coefficient is due to the deviation of stoichiometric.


2014 ◽  
Vol 1043 ◽  
pp. 40-44 ◽  
Author(s):  
Ghenadii Korotcenkov ◽  
V. Brinzari ◽  
L. Trakhtenberg ◽  
B.K. Cho

Structural, electrophysical and thermoelectric properties of nanoscaled In2O3films doped by Sn and Zn were studied. Thin films based on In2O3-SnO2and In2O3-SnO2-ZnO systems were prepared by spray pyrolysis method from water solutions of metal chlorides. It was confirmed that In2O3-based films, especially the In2O3:Sn ones, are promising material for applications related to thermoelectricity. The power factor of obtained films was found to be on the level of the best samples prepared on the base of ITO system.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2849 ◽  
Author(s):  
Yong Du ◽  
Haixia Li ◽  
Xuechen Jia ◽  
Yunchen Dou ◽  
Jiayue Xu ◽  
...  

Graphite/poly(3,4-ethyenedioxythiophene) (PEDOT) nanocomposites were prepared by an in-situ oxidative polymerization process. The electrical conductivity and Seebeck coefficient of the graphite/PEDOT nanocomposites with different content of graphite were measured in the temperature range from 300 K to 380 K. The results show that as the content of graphite increased from 0 to 37.2 wt %, the electrical conductivity of the nanocomposites increased sharply from 3.6 S/cm to 80.1 S/cm, while the Seebeck coefficient kept almost the same value (in the range between 12.0 μV/K to 15.1 μV/K) at 300 K, which lead to an increased power factor. The Seebeck coefficient of the nanocomposites increased from 300 K to 380 K, while the electrical conductivity did not substantially depend on the measurement temperature. As a result, a power factor of 3.2 μWm−1 K−2 at 380 K was obtained for the nanocomposites with 37.2 wt % graphite.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 815
Author(s):  
Eliana Vieira ◽  
Joana Figueira ◽  
Ana Lucia Pires ◽  
José Grilo ◽  
Manuel Fernando Silva ◽  
...  

The influence of substrate type in boosting thermoelectric properties of co-evaporated Bi2Te3 and Sb2Te3 films (with 400 nm-thick) is here reported. Optimized power factor values are 2.7 × 10−3 W K−2 m−1 and 1.4 × 10−3 W K−2 m−1 for flexible Bi2Te3 and Sb2Te3 films, respectively. This is an important result as it is at least 2 times higher than the power factor found in the literature for flexible Bi2Te3 and Sb2Te3 films. A flexible infrared thermopile sensor was developed with high detectivity (2.50 × 107 cm √HzW−1).


2012 ◽  
Vol 61 (9) ◽  
pp. 1435-1438 ◽  
Author(s):  
Hee-Jung Lee ◽  
Seungwoo Han ◽  
Kwang Eun Lee ◽  
Hyun Sung Park ◽  
Min-Su Kim

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Pornsiri Wanarattikan ◽  
Piya Jitthammapirom ◽  
Rachsak Sakdanuphab ◽  
Aparporn Sakulkalavek

In this work, stoichiometric Sb2Te3 thin films with various thicknesses were deposited on a flexible substrate using RF magnetron sputtering. The grain size and thickness effects on the thermoelectric properties, such as the Seebeck coefficient (S), electrical conductivity (σ), power factor (PF), and thermal conductivity (k), were investigated. The results show that the grain size was directly related to film thickness. As the film thickness increased, the grain size also increased. The Seebeck coefficient and electrical conductivity corresponded to the grain size of the films. The mean free path of carriers increases as the grain size increases, resulting in a decrease in the Seebeck coefficient and increase in electrical conductivity. Electrical conductivity strongly affects the temperature dependence of PF which results in the highest value of 7.5 × 10−4 W/m·K2 at 250°C for film thickness thicker than 1 µm. In the thermal conductivity mechanism, film thickness affects the dominance of phonons or carriers. For film thicknesses less than 1 µm, the behaviour of the phonons is dominant, while both are dominant for film thicknesses greater than 1 µm. Control of the grain size and film thickness is thus critical for controlling the performance of Sb2Te3 thin films.


Author(s):  
Ulises Acevedo Salas ◽  
Ismail Fourati ◽  
Jean Juraszek ◽  
Fabienne Richomme ◽  
Denis Pelloquin ◽  
...  

The strong interplay between magnetism and transport can tune the thermoelectric properties in chalcogenides and oxides. In the case of ferromagnetic CoS 2 pyrite, it was previously shown that the power factor is large at room temperature, reaching 1 mW m −1  K −2 and abruptly increases for temperatures below the Curie transition ( T C ), an increase potentially due to a magnonic effect on the Seebeck ( S ) coefficient. The too large thermal conductivity approximately equal to 10.5 W m −1  K −1 at room temperature prevents this pyrite from being a good thermoelectric material. In this work, samples belonging to the Co 1− x Fe x S 2 pyrite family ( x  = 0, 0.15 and 0.30) have thus been investigated in order to modify the thermal properties by the introduction of disorder on the Co site. We show here that the thermal conductivity can indeed be reduced by such a substitution, but that this substitution predominantly induces a reduction of the electronic part of the thermal conductivity and not of the lattice part. Interestingly, the magnonic contribution to S below T C disappears as x increases, while at high T , S tends to a very similar value (close to −42 µV K −1 ) for all the samples investigated. This article is part of a discussion meeting issue ‘Energy materials for a low carbon future’.


2020 ◽  
Vol 4 (5) ◽  
pp. 2363-2369 ◽  
Author(s):  
Pushkar Mishra ◽  
Deobrat Singh ◽  
Yogesh Sonvane ◽  
Rajeev Ahuja

We have investigated the electronic structure, vibrational and transport properties of boron chalcogenide BX (X = S, Se, Te) materials, which may have potential applications in high-performance thermoelectric devices.


Sign in / Sign up

Export Citation Format

Share Document