Electropolymerized MIP with MWCNTs on Stir Bar Using Multivariate Optimization for Tetradifon Detection in Date

2019 ◽  
Vol 7 (5) ◽  
pp. 404-417 ◽  
Author(s):  
Fatemeh Ganjeizadeh Rohani ◽  
Mehdi Ansari

Background: Multi-walled carbon nanotubes (MWCNT) adjunct to molecularly imprinted polymers (MIP) have advantages of the large surface area of nanoparticles and selectivity of MIPs for selective extraction of tetradifon as a widely used pesticide in date palm. Objectives: The main aims were the use of experimental design, electrochemical synthesis and ultra-high performance liquid chromatography (UHPLC) to develop a simple, reliable and precise pesticide residue analysis method as an important aspect of food and drug quality control for the determination of tetradifon in date palms. Methods: An MIP in the presence of MWCNT was synthesized by cyclic voltammetric technique on a steel rod to produce a composite of MIP-MWCNTs for stir bar extraction of tetradifon residue in date samples. The experimental design was used to optimize MIPMWCNT composite synthesis through the screening of eight variables. The composite was characterized by scanning electron microscopy (SEM). Tetradifon was determined in extracted samples by UHPLC under optimum conditions. Results: A very thin film was made by MIP-MWCNT coated on a steel rod which was repeatable and had good adhesion and persistence. The detection limit (LOD) and the quantification limit (LOQ) of the method were measured as 16 and 49 ng/ml, respectively. Average recovery of tetradifon at the two spiked levels was observed to be as low as 86.5% to 90.7% (RSD from 0.79% to 1.04%). Conclusion: The low cost, high selectivity, good reproducibility, acceptable intra and inter day precision and accuracy developed method were successfully applied to determine tetradifon residue in date samples purchased from a local market.

Author(s):  
Yaofeng Wang ◽  
Fan Wang ◽  
Yang Kong ◽  
Lei Wang ◽  
Qinchuan Li

Abstract High-performance bioartificial muscles with low-cost, large bending deformation, low actuation voltage, and fast response time have drawn extensive attention as the development of human-friendly electronics in recent years. Here, we report a high-performance ionic bioartificial muscle based on the bacterial cellulose (BC)/ionic liquid (IL)/multi-walled carbon nanotubes (MWCNT) nanocomposite membrane and PEDOT:PSS electrode. The developed ionic actuator exhibits excellent electro-chemo-mechanical properties, which are ascribed to its high ionic conductivity, large specific capacitance, and ionically crosslinked structure resulting from the strong ionic interaction and physical crosslinking among BC, IL, and MWCNT. In particular, the proposed BC-IL-MWCNT (0.10 wt%) nanocomposite exhibited significant increments of Young's modulus up to 75% and specific capacitance up to 77%, leading to 2.5 times larger bending deformation than that of the BC-IL actuator. More interestingly, bioinspired applications containing artificial soft robotic finger and grapple robot were successfully demonstrated based on high-performance BC-IL-MWCNT actuator with excellent sensitivity and controllability. Thus, the newly proposed BC-IL-MWCNT bioartificial muscle will offer a viable pathway for developing next-generation artificial muscles, soft robotics, wearable electronic products, flexible tactile devices, and biomedical instruments.


2013 ◽  
Vol 431 ◽  
pp. 306-311
Author(s):  
Xiang Tao Ran ◽  
Zhi Wang ◽  
Li Yang

With the increasing needs for high-performance gas sensors in industrial production, environmental monitoring and so on, the research on gas sensors is becoming more and more important. In this paper, the electric field intensity distribution simulation process of the interdigital microelectrodes (IMEs) is discussed in details to get the proper electrode structural parameters. The IMEs on the ITO surface with a minimum gap of about 4μm are achieved by lithography, which provides a reliable, low-cost manufacturing method. Sensitive components are made of the multi-walled carbon nanotubes modified materials. The gas-sensing property of the sensor is detected for ammonia. The experiment result shows that the performance of the nanomodified sensor is obviously improved.


2020 ◽  
Vol 44 (7-8) ◽  
pp. 487-493
Author(s):  
Hong-Yan Lin ◽  
Yi-Fei Wang ◽  
Yuan Tian ◽  
Guo-Cheng Liu ◽  
Jian Luan

A CuI coordination polymer based on the N,N’-bis(3-pyridinecarboxamide)-1,4-butane (3-dpyb) ligand, namely [Cu(3-dpyb)0.5Cl], is hydrothermally synthesized and structurally characterized, and is used as a catalyst precursor to synthesize multi-walled carbon nanotubes. Interestingly, the as-grown multi-walled carbon nanotubes exhibit high performance in removing dyes from solution and can serve as a low-cost and fast adsorbent. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model.


2020 ◽  
Vol 8 (26) ◽  
pp. 13095-13105 ◽  
Author(s):  
Qiujun Hu ◽  
Zhongxu Lu ◽  
Yizhuo Wang ◽  
Jing Wang ◽  
Hong Wang ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) have shown low n-type Seebeck coefficients (−10 μV K−1), which are not good enough to prepare high performance low-cost MWCNT based mechanically flexible thermoelectric devices.


Sign in / Sign up

Export Citation Format

Share Document