Microfluidics for the Production of Nanomedicines: Considerations for Polymer and Lipid-based Systems

2019 ◽  
Vol 7 (6) ◽  
pp. 423-443 ◽  
Author(s):  
Sarah Streck ◽  
Linda Hong ◽  
Ben J. Boyd ◽  
Arlene McDowell

Background: Microfluidics is becoming increasingly of interest as a superior technique for the synthesis of nanoparticles, particularly for their use in nanomedicine. In microfluidics, small volumes of liquid reagents are rapidly mixed in a microchannel in a highly controlled manner to form nanoparticles with tunable and reproducible structure that can be tailored for drug delivery. Both polymer and lipid-based nanoparticles are utilized in nanomedicine and both are amenable to preparation by microfluidic approaches. Aim: Therefore, the purpose of this review is to collect the current state of knowledge on the microfluidic preparation of polymeric and lipid nanoparticles for pharmaceutical applications, including descriptions of the main synthesis modalities. Of special interest are the mechanisms involved in nanoparticle formation and the options for surface functionalisation to enhance cellular interactions. Conclusion: The review will conclude with the identification of key considerations for the production of polymeric and lipid nanoparticles using microfluidic approaches.

2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Maluta S. Mufamadi ◽  
Viness Pillay ◽  
Yahya E. Choonara ◽  
Lisa C. Du Toit ◽  
Girish Modi ◽  
...  

The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Patrícia Severino ◽  
Tatiana Andreani ◽  
Ana Sofia Macedo ◽  
Joana F. Fangueiro ◽  
Maria Helena A. Santana ◽  
...  

Lipids and lipid nanoparticles are extensively employed as oral-delivery systems for drugs and other active ingredients. These have been exploited for many features in the field of pharmaceutical technology. Lipids usually enhance drug absorption in the gastrointestinal tract (GIT), and when formulated as nanoparticles, these molecules improve mucosal adhesion due to small particle size and increasing their GIT residence time. In addition, lipid nanoparticles may also protect the loaded drugs from chemical and enzymatic degradation and gradually release drug molecules from the lipid matrix into blood, resulting in improved therapeutic profiles compared to free drug. Therefore, due to their physiological and biodegradable properties, lipid molecules may decrease adverse side effects and chronic toxicity of the drug-delivery systems when compared to other of polymeric nature. This paper highlights the importance of lipid nanoparticles to modify the release profile and the pharmacokinetic parameters of drugs when administrated through oral route.


Author(s):  
Pravin Patil ◽  
Anil Sharma ◽  
Subhash Dadarwal ◽  
Vijay Sharma

The objective of present investigation was to enhance brain penetration of Lamivudine, one of the most widely used drugs for the treatment of AIDS. This was achieved through incorporating the drug into solid lipid nanoparticles (SLN) prepared by using emulsion solvent diffusion technique. The formulations were characterized for surface morphology, size and size distribution, percent drug entrapment and drug release. The optimum rotation speed, resulting into better drug entrapment and percent yield, was in the range of 1000-1250 r/min. In vitro cumulative % drug release from optimized SLN formulation was found 40-50 % in PBS (pH-7.4) and SGF (pH-1.2) respectively for 10 h. After 24 h more than 65 % of the drug was released from all formulations in both mediums meeting the requirement for drug delivery for prolong period of time.


Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


2016 ◽  
Vol 12 (5) ◽  
pp. 598-604 ◽  
Author(s):  
Tatiana N. Pashirova ◽  
Tatiana Andreani ◽  
Ana S. Macedo ◽  
Eliana B. Souto ◽  
Lucia Ya. Zakharova

Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 359
Author(s):  
Thai Thanh Hoang Thi ◽  
Estelle J. A. Suys ◽  
Jung Seok Lee ◽  
Dai Hai Nguyen ◽  
Ki Dong Park ◽  
...  

COVID-19 vaccines have been developed with unprecedented speed which would not have been possible without decades of fundamental research on delivery nanotechnology. Lipid-based nanoparticles have played a pivotal role in the successes of COVID-19 vaccines and many other nanomedicines, such as Doxil® and Onpattro®, and have therefore been considered as the frontrunner in nanoscale drug delivery systems. In this review, we aim to highlight the progress in the development of these lipid nanoparticles for various applications, ranging from cancer nanomedicines to COVID-19 vaccines. The lipid-based nanoparticles discussed in this review are liposomes, niosomes, transfersomes, solid lipid nanoparticles, and nanostructured lipid carriers. We particularly focus on the innovations that have obtained regulatory approval or that are in clinical trials. We also discuss the physicochemical properties required for specific applications, highlight the differences in requirements for the delivery of different cargos, and introduce current challenges that need further development. This review serves as a useful guideline for designing new lipid nanoparticles for both preventative and therapeutic vaccines including immunotherapies.


2010 ◽  
Vol 27 (4-6) ◽  
pp. 190-205 ◽  
Author(s):  
Ryan B. Huang ◽  
Supriya Mocherla ◽  
Michael J. Heslinga ◽  
Phapanin Charoenphol ◽  
Omolola Eniola-Adefeso

Sign in / Sign up

Export Citation Format

Share Document