Cell Growth, Lipid Production and Productivity in Photosynthetic Microalga Chlorella vulgaris under Different Nitrogen Concentrations and Culture Media Replacement

2018 ◽  
Vol 9 (2) ◽  
pp. 142-151
Author(s):  
Mohammad H. Morowvat ◽  
Younes Ghasemi
2019 ◽  
Author(s):  
Sanaa Mahmoud Metwally Shanab ◽  
Abir M Partila ◽  
Hamdy Elsayed Ahmed Ali ◽  
Mohd A Abdullah

Background: Many efforts have been made to increase the productivity of microalgae for biodiesel productions. The use of silver nanoparticles is the novel way to elicit stress responses with enhanced lipid level. Results: In this study, the biosynthesis of extracellular silver nanoparticles (AgNPs) was reported and their impacts as elicitors on the cell growth and metabolite contents of Chlorella vulgaris and Dictyochloropsis splendida were evaluated. The production of AgNPs was achieved by the reduction of silver nitrate (AgNO3) solution, after incubation at 35°C overnight with Pseudomonas aeruginosa supernatant, and exposed to gamma irradiation at 100 Gy for 1.5 mins. The biosynthesis was confirmed by the maximum absorption peak at 455 nm with the UV–Vis Spectrophotometer. The Atomic Force Microscopy (AFM) recorded the spherical nanoparticles size of 10 nm, while the Dynamic Light Scattering (DLS) recorded the size range of 6.7 to 12.1 nm (84.2%) and the particles were monodispersed. The Gas Chromatography/Mass Spectroscopic analysis of the bacterial filtrate before reaction with AgNO3 suggested the presence of ethylene glycol derivatives which may act as a reducing agent of silver ions to silver nanoparticles. Lower AgNPs concentrations (1, 3 and 5 mg/L) enhanced the lipid production but at the expense of cell growth. All AgNPs concentrations however displayed a negative impact on carbohydrates content. The lipid profile of the AgNPs-treated algae showed the appearance or disappearance, and increase or decrease of certain fatty acids, as compared to the untreated control. The Saturated Fatty Acids represented the highest composition (61-67%) of the total fatty acids and Palmitic acids (16:0) were dominant (43.06-46.57%). Conclusion: Lipids of this composition could withstand autoxidation during storage and are perfect feedstock for biodiesel and other lipid based applications.


2018 ◽  
Vol 19 (11) ◽  
pp. 3538 ◽  
Author(s):  
Brandon Lehrich ◽  
Yaxuan Liang ◽  
Pooya Khosravi ◽  
Howard Federoff ◽  
Massimo Fiandaca

It is known that culture media (CM) promotes cellular growth, adhesion, and protects explanted primary brain cells from in vitro stresses. The fetal bovine serum (FBS) supplement used in most CM, however, contains significant quantities of extracellular vesicles (EVs) that confound quantitative and qualitative analyses from the EVs produced by the cultured cells. We quantitatively tested the ability of common FBS EV-depletion protocols to remove exogenous EVs from FBS-supplemented CM and evaluated the influence such methods have on primary astrocyte culture growth and viability. We assessed two methodologies utilized for FBS EV removal prior to adding to CM: (1) an 18-h ultracentrifugation (UC); and (2) a commercial EV-depleted FBS (Exo-FBS™). Our analysis demonstrated that Exo-FBS™ CM provided the largest depletion (75%) of total FBS EVs, while still providing 6.92 × 109 ± 1.39 × 108 EVs/mL. In addition, both UC and Exo-FBS™ CM resulted in poor primary astrocyte cell growth and viability in culture. The two common FBS EV-depletion methods investigated, therefore, not only contaminate in vitro primary cell-derived EV analyses, but also provide a suboptimal environment for primary astrocyte cell growth and viability. It appears likely that future CM optimization, using a serum-free alternative, might be required to advance analyses of cell-specific EVs isolated in vitro.


Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 157 ◽  
Author(s):  
Joao Fonseca ◽  
Fereshteh Moradi ◽  
Andrew Valente ◽  
Jeffrey Stuart

Resveratrol is a plant-derived polyphenol that has been widely studied for its putative health promoting effects. Many of those studies have been conducted in cell culture, in supra-physiological levels of oxygen and glucose. Resveratrol interacts with reactive oxygen species (ROS) as an antioxidant or pro-oxidant. Resveratrol affects the expression and activities of ROS-producing enzymes and organelles. It is therefore important to consider how cell culture conditions might determine the effects of resveratrol on cultured cells. We determined the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics in C2C12 mouse myoblasts and PC3 human prostate cancer cells under conditions of physiological (5%) and supra-physiological (18%) oxygen, and normo- (5 mM) and hyper-glycemia (25 mM). Interestingly, most effects of resveratrol on the parameters measured here were dependent upon prevailing oxygen and glucose levels during the experiment. Many of the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics that were seen in 25 mM glucose and/or 18% oxygen were absent under the physiologically relevant conditions of 5 mM glucose with 5% oxygen. These findings emphasize the importance of using physiologically meaningful starting conditions for cell-culture experiments with resveratrol and indeed any manipulation affecting ROS metabolism and mitochondria.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e17558-e17558
Author(s):  
Alba Martínez ◽  
Molly Buckley ◽  
Joel Berry ◽  
Rebecca Christian Arend

e17558 Background: Epithelial Ovarian Cancer (EOC) is the most common cause of death among gynecological malignancies. This is a result of the high rate of recurrence and chemo-resistance in EOC patients. Therefore, the development of new therapeutics is crucial. A major factor contributing to this is the lack of therapeutic candidates is lack of translational accuracy in preclinical models. Recently, 3-dimensional (3-D) models have aided in accurately recreating tumor biology. We have developed an EOC 3-D perfused bioreactor system that recapitulates EOC tumor biology and incorporates tumor biomechanical regulation. This model allows for us to more accurately predict the clinical response of new drug candidates, which aids in elimination of ineffective candidates prior to clinical trials. Methods: EOC cell lines (luciferase-taggedSKOV-3 and OVCAR-8) were embedded in a relevant extracellular matrix (ECM) and injected into a perfused, polydimethylsiloxane (PDMS) bioreactor. Microchannels were embedded in matrigel so that the cell culture media with or without chemotherapy could flow through the perfused PDMS to provide nutrient delivery and gas exchange enhancing viability and function of surrounding cells. The bioreactors were connected to a peristaltic pump that allowed for the cell culture media to perfuse over a 7-day period. We monitored cell viability using bioluminescence imaging (BLI), immunohistochemistry (IHC), and lactate dehydrogenase (LDH) release in media. Results: BLI showed a linear increase in SKOV-3 and OVCAR-8 cell growth over 7 days. These results were confirmed by IHC measuring the number of nucleated cells per micron2. Graphical representation of the region of interest (ROI) showed a high correlation between IHC staining of nucleated cells and BLI score. IHC analysis of PAX8 staining was positive and proved that the perfusion bioreactor system maintains EOC biology over time. In addition, our results suggest that the bioreactor is a suitable model for drug preclinical testing in both cell lines as well as in patients’ samples. Conclusions: Our preliminary results using the 3D EOC perfused, PDMS bioreactor model showed increased EOC cell growth overtime, while maintaining original EOC histology. Moreover, our results suggest that this model could provide a novel platform to study therapeutic interventions in EOC. Our ultimate goal is to implement ovarian cancer microenvironment components (e.g. immune cells) into bioreactor system to study different drug treatments to better determine drug candidate’s translational efficacy.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Rasool Kamal ◽  
Yuxue Liu ◽  
Qiang Li ◽  
Qitian Huang ◽  
Qian Wang ◽  
...  

Abstract Background Crude glycerol as a promising feedstock for microbial lipid production contains several impurities that make it toxic stress inducer at high amount. Under stress conditions, microorganisms can accumulate l-proline as a safeguard. Herein, l-proline was assessed as an anti-stress agent in crude glycerol media. Results Crude glycerol was converted to microbial lipids by the oleaginous yeast Rhodosporidium toruloides CGMCC 2.1389 in a two-staged culture mode. The media was supplied with exogenous l-proline to improve lipid production efficiency in high crude glycerol stress. An optimal amount of 0.5 g/L l-proline increased lipid titer and lipid yield by 34% and 28%, respectively. The lipid titer of 12.2 g/L and lipid content of 64.5% with a highest lipid yield of 0.26 g/g were achieved with l-proline addition, which were far higher than those of the control, i.e., lipid titer of 9.1 g/L, lipid content of 58% and lipid yield of 0.21 g/g. Similarly, l-proline also improved cell growth and glycerol consumption. Moreover, fatty acid compositional profiles of the lipid products was found suitable as a potential feedstock for biodiesel production. Conclusion Our study suggested that exogenous l-proline improved cell growth and lipid production on crude glycerol by R. toruloides. The fact that higher lipid yield as well as glycerol consumption indicated that l-proline might act as a potential anti-stress agent for the oleaginous yeast strain.


Sign in / Sign up

Export Citation Format

Share Document