Enhanced MSEEC routing protocol using tabu search with static and mobile nodes in WSN

Author(s):  
Varsha Sahni ◽  
Manju Bala ◽  
Manoj Kumar

Background Background of this paper has taken place in mainly heterogeneous network in which three types of nodes are present like normal node, advance node and super node with different amount of energy. The energy of super node is greater than that of advance and normal nodes and the energy of advance nodes are also greater than that of normal nodes in the designed network. The optimization techniques have to be studied from the swarm intelligence based on the different aspects of routing. Objective: The objective of this paper is to propose a new heterogeneous protocol with the help of hybrid meta-heuristic technique. In this technique, the shortest route has been selected and forwarded the data to the sink in a minimal time span to save the energy and make the network more stable. Method: To evaluate the technique, a new hybrid technique has been created, where the data transmission is implemented from the beginning. This technique contains the route process of the algorithm which was made available through a hybrid meta-heuristic technique. Results: Simulation results show that the hybrid meta-heuristic technique has high throughput with less number of dead nodes with existing methods and also show that the efficiency and stability of new proposed protocol. Conclusion The conclusion to this paper is a novel, energy-efficient technique applied for randomly deployed sensor nodes over the wireless sensor network and enhancement has been done in stability and throughput of a new proposed algorithm in case of static as well as moving nodes.

2020 ◽  
Vol 16 (3) ◽  
pp. 1-31
Author(s):  
Varsha Shani ◽  
Manju Bala ◽  
Manoj Kumar ◽  
Neeraj Kumar

Introduction: This article is the result of the research “Energy efficient routing protocols in wireless sensor network: Examine the impact of M-SEEC routing protocols on the lifetime of WSN with an energy efficient TABU optimization routing protocol”developed in the IKG, Punjab Technical University, India in 2019.Problem: The task of finding and maintaining routes in WSNs is non-trivialsince energy restrictions and sudden changes in node status cause frequent and unpredictable changes.Objective: The objective of this paper is to propose an energy efficient heterogeneous protocolwith the help of a hybrid meta-heuristic technique.Methodology: In the hybrid meta-heuristic technique, the shortest route has been selected and the data forwarded to the sink in a minimal time span,savingenergy and making the network more stable. To evaluate the technique, a new hybrid technique has been created where the data transmission is implemented from the beginning under MATLAB 2013a.Results: The proposed technique is better than the existing ones since the remaining energy in the network is increased by 62% compared to normal nodes in MSEEC, 65% compared to advanced nodes in MSEEC and 70% compared to super nodes in MSEEC. The network lifetime was also enhanced by 70.8% compared to MSEEC.Conclusion: The proposed protocol was found to be superior based on the average residual energy.This paper proposes an efficient routing mechanism towards the energy efficient network.Originality: Through this research, a novel version of MSEEC protocol is carried out using the TABU search mechanism to generate the functions of two neighbourhoods to detect the optimum path with the aim of maximizing the network lifetime in an area of 200×200m2.Limitations: The lack of other routing techniques falls under swarm intelligence.


Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Faris A. Almalki ◽  
Soufiene Ben Othman ◽  
Fahad A. Almalki ◽  
Hedi Sakli

Healthcare is one of the most promising domains for the application of Internet of Things- (IoT-) based technologies, where patients can use wearable or implanted medical sensors to measure medical parameters anywhere and anytime. The information collected by IoT devices can then be sent to the health care professionals, and physicians allow having a real-time access to patients’ data. However, besides limited batteries lifetime and computational power, there is spatio-temporal correlation, where unnecessary transmission of these redundant data has a significant impact on reducing energy consumption and reducing battery lifetime. Thus, this paper aims to propose a routing protocol to enhance energy-efficiency, which in turn prolongs the sensor lifetime. The proposed work is based on Energy Efficient Routing Protocol using Dual Prediction Model (EERP-DPM) for Healthcare using IoT, where Dual-Prediction Mechanism is used to reduce data transmission between sensor nodes and medical server if predictions match the readings or if the data are considered critical if it goes beyond the upper/lower limits of defined thresholds. The proposed system was developed and tested using MATLAB software and a hardware platform called “MySignals HW V2.” Both simulation and experimental results confirm that the proposed EERP-DPM protocol has been observed to be extremely successful compared to other existing routing protocols not only in terms of energy consumption and network lifetime but also in terms of guaranteeing reliability, throughput, and end-to-end delay.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Baniata ◽  
Jiman Hong

The recent advances in sensing and communication technologies such as wireless sensor networks (WSN) have enabled low-priced distributed monitoring systems that are the foundation of smart cities. These advances are also helping to monitor smart cities and making our living environments workable. However, sensor nodes are constrained in energy supply if they have no constant power supply. Moreover, communication links can be easily failed because of unequal node energy depletion. The energy constraints and link failures affect the performance and quality of the sensor network. Therefore, designing a routing protocol that minimizes energy consumption and maximizes the network lifetime should be considered in the design of the routing protocol for WSN. In this paper, we propose an Energy-Efficient Unequal Chain Length Clustering (EEUCLC) protocol which has a suboptimal multihop routing algorithm to reduce the burden on the cluster head and a probability-based cluster head selection algorithm to prolong the network lifetime. Simulation results show that the EEUCLC mechanism enhanced the energy balance and prolonged the network lifetime compared to other related protocols.


2020 ◽  
Vol 17 (6) ◽  
pp. 2483-2487
Author(s):  
Nippun Kamboj ◽  
Dalip ◽  
Munishwar Rai

Current time represents the era of communication technology and in this revolution MANET is widely used and act as a key star for data communication in real life decisive scenario for e.g., disaster management, traffic control, military services etc. MANET is infrastructureless data communication network comprising of mobile nodes. For MANET it requires secure and energy efficient framework for the underlying routing protocol. To meet the need of efficient data communication in MANET, an Energy Efficient and Secure AODV (EES-AODV) protocol is proposed. In the projected routing protocol, first the order of network nodes happen dependent on energy and afterward encryption has been done. Simulation of projected protocol is performed for such as Average Delay, PDR and Throughput. Simulated results shows that modified AODV gives optimized performance and provides a more secure and energy aware protocol.


2022 ◽  
Vol 6 (1) ◽  
pp. 31-42
Author(s):  
Zainab Alansari ◽  
Mohammed Siddique ◽  
Mohammed Waleed Ashour

Wireless sensor networks (WSNs) are set of sensor nodes to monitor and detect transmitted data to the sink. WSNs face significant challenges in terms of node energy availability, which may impact network sustainability. As a result, developing protocols and algorithms that make the best use of limited resources, particularly energy resources, is critical issues for designing WSNs. Routing algorithms, for example, are unique algorithms as they have a direct and effective relationship with lifetime of network and energy. The available routing protocols employ single-hop data transmission to the sink and clustering per round. In this paper, a Fuzzy Clustering and Energy Efficient Routing Protocol (FCERP) that lower the WSNs energy consuming and increase the lifetime of network is proposed. FCERP introduces a new cluster-based fuzzy routing protocol capable of utilizing clustering and multiple hop routing features concurrently using a threshold limit. A novel aspect of this research is that it avoids clustering per round while considering using fixed threshold and adapts multi-hop routing by predicting the best intermediary node for clustering and the sink. Some Fuzzy factors such as residual energy, neighbors amount, and distance to sink considered when deciding which intermediary node to use.


Sign in / Sign up

Export Citation Format

Share Document