A Review on the Development of Dampers Utilizing Smart Magnetorheological Fluids

2019 ◽  
Vol 4 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Jong-Seok Oh ◽  
Seung-Bok Choi

It is generally known that MR fluid is a kind of designed materials whose rheological properties are controllable with the application of an external magnetic field. Based on these features, MR dampers have gained much attention of researchers owing to their salient properties such as controllable damping force and relatively fast response time. This article offers a recent review on the MR damper technology, particularly focusing on the application to various fields. Conceivable limitations, challenges, and comparative advantages of MR damper are critically analyzed. In order to promote the practical use of MR damper in application from the automobile to the military sector, this review summarizes different MR dampers and their significant contribution.

2014 ◽  
Vol 984-985 ◽  
pp. 648-655
Author(s):  
M.L. Brabin Nivas ◽  
T. Prabaharan ◽  
J. Libin ◽  
T. Bibin Jose

Abst r a c t -Magneto rheological aqueous is an old advancing to the bazaar at top speed. Excellent appearance like fast response, simple interface amid electrical ability ascribe and automated ability output, and absolute controllability accomplish MRF technology adorable for abounding applications.The aim of this project is preparation of MR-fluids by using the different types of carrier fluid mixed with iron powder and stability and magnetic properties are analysed. Thesedimentation of iron particles can be reduced by using additives. The sedimentation can be analysed by boundary variation of the clear fluid to the fluid turbulence. The viscosity of smart fluid can be increased by varying the applied magnetic field.The performance of the MR-damper depends on the applied maximum magnetic field and the hydraulic circuit design. The MR-damper force by increasing the magnetic field can be analysed by sing the FEMM V4 Software.Damping force depends on the excitation of current and magnetic field.Key words: Rheological, magnetic field, damping force, FEMM, flux density


Author(s):  
Gaoyu Liu ◽  
Fei Gao ◽  
Wei-Hsin Liao

Abstract Due to low power consumption and fast response, magnetorheological (MR) dampers are widely used in various engineering applications. To enhance the performances, efforts have been made to increase the field dependent force with the same power consumption. However, the fluid viscous force is also increased significantly, which is undesirable in practical use. To tackle this problem, the focus of this paper is to design and test a new MR damper with micro-grooves for performance enhancement. First, the detailed design of the proposed MR damper is provided. A prototype of the new MR damper is fabricated. Silicon steel circular rings with thickness of 0.25 mm are installed around the damper piston to form two-layer micro-grooves. Experimental results of the two MR dampers without and with micro-grooves are then compared. The advantages of MR damper with micro-grooves over the one without micro-grooves are validated. The damping force and controllable force range of MR damper with micro-grooves are larger than the one without micro-grooves. When designing MR damper, making micro-grooves can also decrease the increment of fluid viscous force while keeping the same increase of field dependent force. With micro-grooves, the field dependent force is increased by 92.7% with the same power consumption, while the fluid viscous force is increased by 43%.


Author(s):  
F. Zschunke ◽  
P. O. Brunn ◽  
M. Steven

Magnetorheological fluids (MRFs) show a high but reversible rise of viscosity upon application of an external magnetic field. This effect can be utilized in controllable dampers, when a deep understanding of the mechanisms for this behavior is available. Today the design of dampers is still quite empiric so it is favorable to be able to simulate the damper geometries first. Measurements on MR dampers are shown and compared with the results of a combined simulation of the problem with a CFD code for the flow and a FEA code for the magnetic field distribution in the damper geometry. It is shown that the flow resistance of the orifices that corresponds to the damping force of the damper can be predicted with this simulation using a simple fluid model.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhizhen Dong ◽  
Zhimin Feng ◽  
Yuehua Chen ◽  
Kefan Yu ◽  
Gang Zhang

The consistency of magnetic flux density of damping gap (CMDG) represents the balancing magnetic flux density in each damping gap of magnetorheological (MR) dampers. It can make influences on the performances of MR dampers and the accuracy of relevant objective functions. In order to improve the mechanical performances of the MR damper with a two-stage coil, the function for calculating CMDG needs to be found. By establishing an equivalent magnetic circuit model of the MR damper, the CMDG function is derived. Then, the multiobjective optimization function and the working flow of optimal design are presented by combining the parallel-plate model of the MR damper with the function posed before. Taking the damping force, the dynamic range, the response time, and the CMDG as the optimization objective, and the external geometric dimensions of the SG-MRD60 damper as the bound variable, this paper optimizes the internal geometric dimensions of MR damper by using a NSGA-III algorithm on the PlatEMO platform. The results show that the obtained scheme in Pareto-optimal solutions has existed with better performance than that of SG-MRD60 scheme. According to the results of the finite element analysis, the multiobjective optimization design including the CMDG function can improve the uniformity of magnetic flux density of the MR damper in damping gap, which meets the requirements of manufacture and application.


Author(s):  
Anria Strydom ◽  
Werner Scholtz ◽  
Schalk Els

Magnetorheological (MR) dampers are controllable semi-active dampers capable of providing a range of continuous damping settings. MR dampers are often incorporated in suspension systems of vehicles where conflicting damping characteristics are required for favorable ride comfort and handling behavior. For control applications the damper controller determines the required damper current in order to track the desired damping force, often by using a suitable MR damper model. In order to utilise the fast switching time capability of MR dampers, a model that can be used to directly calculate damper current is desired. Unfortunately few such models exist and other methods, which often negatively affect the computational efficiency of the model, need to be used when implementing these models. In this paper a selection of MR damper models are developed and evaluated for both accuracy and computational efficiency while tracking a desired damping force. The Kwok model is identified as a suitable candidate for the intended suspension control application.


2014 ◽  
Vol 6 ◽  
pp. 931683 ◽  
Author(s):  
Young-Tai Choi ◽  
Norman M. Wereley

This paper analyzes flow mode magnetorheological (MR) dampers with an eccentric annular gap (i.e., a nonuniform annular gap). To this end, an MR damper analysis for an eccentric annular gap is constructed based on approximating the eccentric annular gap using a rectangular duct with a variable gap, as well as a Bingham-plastic constitutive model of the MR fluid. Performance of flow mode MR dampers with an eccentric gap was assessed analytically using both field-dependent damping force and damping coefficient, which is the ratio of equivalent viscous field-on damping to field-off damping. In addition, damper capabilities of flow mode MR dampers with an eccentric gap were compared to a concentric gap (i.e., uniform annular gap).


Author(s):  
R.B. Soujanya ◽  
D.D. Jebaseelan ◽  
S. Kannan

Passenger’s comfort in moving vehicles depends on the quality of the ride. The major cause of discomfort is the vibration transmitted to passengers due to the road irregularities. For a comfortable ride on a vehicle, vibration must stay within prescribed standards. In the present work, an attempt was made to show that, the vibrations can be limited with the use of Magneto-rheological (MR) dampers for varying road profiles than the passive damping methods. MR dampers are semi-active control devices that use MR fluids to produce controllable damping force as they are known to exhibit nonlinear behaviour. Multi body dynamic studies were done to study the response of the system using a quarter car model. In this paper, passive damping (viscous damping) was considered at natural frequency of 1.012Hz, the response of damping was observed after 10s and the acceleration was found to be 6m/s2. When MR damper is employed as the magnetic force increases, the response of the damping was better than the passive damping, at 1.2A it comes down to 0.55m/s2, and the vibration gets dampened after 1.75s. Hence, from this study it is concluded that the MR damper can be employed in automobile for better ride comfort.


2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Zekeriya Parlak ◽  
Tahsin Engin ◽  
İsmail Şahin

Magnetorheological (MR) dampers have attracted the interest of suspension designers and researchers because of their variable damping feature, mechanical simplicity, robustness, low power consumption and fast response. This study deals with the optimal configuration of an MR damper using the Taguchi experimental design approach. The optimal solutions of the MR damper are evaluated for the maximum dynamic range and the maximum damper force separately. The MR dampers are constrained in a cylindrical container defined by radius and height. The optimal damper configurations obtained from this study are fabricated and tested for verification. The verification tests show that the dampers provide the specified damper force and dynamic range.


Author(s):  
Toshihiko Shiraishi ◽  
Tomoya Sakuma ◽  
Shin Morishita

Two typical types of MR damper were proposed, where the orifice for MR fluid was designed to place between the piston and the cylinder in one type, and to place on the piston in the other type. In the former design, MR fluid was expected to be subjected to shear flow in the orifice, and subjected to Poiseuille flow in the latter design. The damping force of MR dampers was experimentally measured under various conditions of piston speed, piston amplitude and applied electric current to the magnetic coil. The experimental results showed that the maximum damping force were almost the same in both types of damper under the same conditions, except for case under very little amplitude. It was also shown that typical characteristics of MR damper depended on the clearance of orifice and air volume in MR dampers, and the optimal design for the dynamic range of damping force existed in relation to the clearance of orifice. The experimental result of the damping force of these dampers showed good agreement with the analytical result.


Author(s):  
Q. Ouyang ◽  
J. Wang ◽  
J. J. Zheng ◽  
X. J. Wang ◽  
Y. Xi

Magnetorheological (MR) fluids contain suspensions that exhibit a rapid, reversible and tunable transition from a free-flowing state to a semi-solid state upon the application of an external magnetic field. This behavior has attracted significant attention in the development of dampers, shock absorption system, military and defence system and safety devices in aerospace engineering. However, many of the issues pertaining to MR damper behavior in impact and shock applications are relatively unknown. This study provides an experimental analysis and simulation analysis by using COMSOL multyphysics of MR dampers when they are subjected to impact and shock loading. To this end, a novel MR damper with a four-stage piston and independent input currents is designed and analyzed. In this paper, two-dimension symmetrical Computational Fluid Dynamics (CFDs) simulation for the laminar flow of an incompressible MR fluid in the annular gap in the presence of a varying magnetic field. The purpose of this research is to study the couple effect of electromagnetic field and the fluid flow field and magnitude of damping force in a macroscopic view. The governing differential equations describing the magnetic field and fluid flow in the annular gap are solved numerically by COMSOL Multiphysics. Through the electromagnetic analysis and flow field analysis, the coupling effect of the magnetic field between the coil and the multiphysics coupling effect of novel MR was be found. For the each coil has an independent power supply, so it can provide a wider range damping force by combining the electromagnetic field of coils.


Sign in / Sign up

Export Citation Format

Share Document