Evaluation of venom as a promising tool for drug discovery [focusing on Neurological disorders]

2021 ◽  
Vol 01 ◽  
Author(s):  
Soodeh Omidi ◽  
Masoumeh Mehrpouya ◽  
Morteza Oladnabi ◽  
Abbas Azadmehr ◽  
Fatemeh Kazemi-Lomedasht ◽  
...  

: Venom toxins have specific molecular targets that result in envenomated complications such as neurotoxicity. During evolution, the composition of the venom has been evolved synchronously with the evolution of molecular targets. Venom is an important tool for humans from two different perspectives; venom advantages and disadvantages. Meanwhile, clinical and pharmacological applications of venoms due to their specific targeting and modulation of physiological elements or targets are notable in various disorders. The better understanding of venoms and their composition will improve the practical applications of some toxin-based drugs in drugstoresin the future.

Author(s):  
Jana Boháčová ◽  
Stanislav Staněk ◽  
Martin Vavro

Abstract This paper deals with the possibilities of using alkali-activated systems in construction. This article summarizes the advantages and disadvantages of geopolymer in comparison to Portland cement, summarizes research and practical applications of alkali-activated materials in our country and abroad, and provides an overview of directions where these alternative inorganic binders can be in the future very well applied.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sanja Bojic ◽  
Alex Murray ◽  
Barry L. Bentley ◽  
Ralf Spindler ◽  
Piotr Pawlik ◽  
...  

AbstractThe preservative effects of low temperature on biological materials have been long recognised, and cryopreservation is now widely used in biomedicine, including in organ transplantation, regenerative medicine and drug discovery. The lack of organs for transplantation constitutes a major medical challenge, stemming largely from the inability to preserve donated organs until a suitable recipient is found. Here, we review the latest cryopreservation methods and applications. We describe the main challenges—scaling up to large volumes and complex tissues, preventing ice formation and mitigating cryoprotectant toxicity—discuss advantages and disadvantages of current methods and outline prospects for the future of the field.


Author(s):  
D. R. Denley

Scanning tunneling microscopy (STM) has recently been introduced as a promising tool for analyzing surface atomic structure. We have used STM for its extremely high resolution (especially the direction normal to surfaces) and its ability for imaging in ambient atmosphere. We have examined surfaces of metals, semiconductors, and molecules deposited on these materials to achieve atomic resolution in favorable cases.When the high resolution capability is coupled with digital data acquisition, it is simple to get quantitative information on surface texture. This is illustrated for the measurement of surface roughness of evaporated gold films as a function of deposition temperature and annealing time in Figure 1. These results show a clear trend for which the roughness, as well as the experimental deviance of the roughness is found to be minimal for evaporation at 300°C. It is also possible to contrast different measures of roughness.


2020 ◽  
pp. 92-107 ◽  
Author(s):  
A. I. Bakhtigaraeva ◽  
A. A. Stavinskaya

The article considers the role of trust in the economy, the mechanisms of its accumulation and the possibility of using it as one of the growth factors in the future. The advantages and disadvantages of measuring the level of generalized trust using two alternative questions — about trusting people in general and trusting strangers — are analyzed. The results of the analysis of dynamics of the level of generalized trust among Russian youth, obtained within the study of the Institute for National Projects in 10 regions of Russia, are presented. It is shown that there are no significant changes in trust in people in general during the study at university. At the same time, the level of trust in strangers falls, which can negatively affect the level of trust in the country as a whole, and as a result have negative effects on the development of the economy in the future. Possible causes of the observed trends and the role of universities are discussed. Also the question about the connection between the level of education and generalized trust in countries with different quality of the institutional environment is raised.


2020 ◽  
Vol 16 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Rishabh Kaushik ◽  
Sheeza Khan ◽  
Meesha Sharma ◽  
Srinivasan Hemalatha ◽  
Zeba Mueed ◽  
...  

Prostate cancer has become a global health concern as it is one of the leading causes of mortality in males. With the emerging drug resistance to conventional therapies, it is imperative to unravel new molecular targets for disease prevention. Cytochrome P450 (P450s or CYPs) represents a unique class of mixed-function oxidases which catalyses a wide array of biosynthetic and metabolic functions including steroidogenesis and cholesterol metabolism. Several studies have reported the overexpression of the genes encoding CYPs in prostate cancer cells and how they can be used as molecular targets for drug discovery. But due to functional redundancy and overlapping expression of CYPs in several other metabolic pathways there are several impediments in the clinical efficacy of the novel drugs reported till now. Here we review the most crucial P450 enzymes which are involved in prostate cancer and how they can be used as molecular targets for drug discovery along with the clinical limitations of the currently existing CYP inhibitors.


2018 ◽  
Vol 17 (9) ◽  
pp. 654-670 ◽  
Author(s):  
Mohit Kumar ◽  
Rajat Sandhir

Background & Objective: Hydrogen sulfide [H2S] has been widely known as a toxic gas for more than 300 years in the scientific community. However, the understanding about this small molecule has changed after the discovery of involvement of H2S in physiological and pathological mechanisms in brain. H2S is a third gasotransmitter and neuromodulator after carbon monoxide [CO] and nitric oxide [NO]. H2S plays an important role in memory and cognition by regulating long-term potentiation [LTP] and calcium homeostasis in neuronal cells. The disturbances in endogenous H2S levels and trans-sulfuration pathway have been implicated in neurodegenerative disorders like Alzheimer’s disease, Parkinson disease, stroke and traumatic brain injury. According to the results obtained from various studies, H2S not only behaves as neuromodulator but also is a potent antioxidant, anti-inflammatory and anti-apoptotic molecule suggesting its neuroprotective potential. Conclusion: Recently, there is an increased interest in developing H2S releasing pharmaceuticals to target various neurological disorders. This review covers the information about the involvement of H2S in neurodegenerative diseases, its molecular targets and its role as potential therapeutic molecule.


Author(s):  
Yudong Bao ◽  
Linkai Wu ◽  
Yanling Zhao ◽  
Chengyi Pan

Background:: Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers, The performance of the bearing directly affects the machining efficiency of the machine tool, Obtaining a higher value is the direction of its research and development. Objective:: By analyzing the research achievements and patents of electric spindle angular contact bearings, summarizing the development trend provides a reference for the development of electric spindle bearings. Methods:: Through the analysis of the relevant technology of the electric spindle angular contact ball bearing, the advantages and disadvantages of the angular contact ball bearing are introduced, and the research results are combined with the patent analysis. Results:: With the rapid development of high-speed cutting and numerical control technology and the needs of practical applications, the spindle requires higher and higher speeds for bearings. In order to meet the requirements of use, it is necessary to improve the bearing performance by optimizing the structure size and improving the lubrication conditions. Meanwhile, reasonable processing and assembly methods will also have a beneficial effect on bearing performance. Conclusion:: With the continuous deepening of bearing technology research and the use of new structures and ceramic materials has made the bearing's limit speed repeatedly reach new highs. The future development trend of high-speed bearings for electric spindles is environmental protection, intelligence, high speed, high precision and long life.


Author(s):  
Zhenhua Li ◽  
Weihui Jiang ◽  
Li Qiu ◽  
Zhenxing Li ◽  
Yanchun Xu

Background: Winding deformation is one of the most common faults in power transformers, which seriously threatens the safe operation of transformers. In order to discover the hidden trouble of transformer in time, it is of great significance to actively carry out the research of transformer winding deformation detection technology. Methods: In this paper, several methods of winding deformation detection with on-line detection prospects are summarized. The principles and characteristics of each method are analyzed, and the advantages and disadvantages of each method as well as the future research directions are expounded. Finally, aiming at the existing problems, the development direction of detection method for winding deformation in the future is prospected. Results: The on-line frequency response analysis method is still immature, and the vibration detection method is still in the theoretical research stage. Conclusion: The ΔV − I1 locus method provides a new direction for on-line detection of transformer winding deformation faults, which has certain application prospects and practical engineering value.


Author(s):  
Robert Laumbach ◽  
Michael Gochfeld

This chapter describes the basic principles of toxicology and their application to occupational and environmental health. Topics covered include pathways that toxic substances may take from sources in the environment to molecular targets in the cells of the body where toxic effects occur. These pathways include routes of exposure, absorption into the body, distribution to organs and tissues, metabolism, storage, and excretion. The various types of toxicological endpoints are discussed, along with the concepts of dose-response relationships, threshold doses, and the basis of interindividual differences and interspecies differences in response to exposure to toxic substances. The diversity of cellular and molecular mechanisms of toxicity, including enzyme induction and inhibition, oxidative stress, mutagenesis, carcinogenesis, and teratogenesis, are discussed and the chapter concludes with examples of practical applications in clinical evaluation and in toxicity testing.


Sign in / Sign up

Export Citation Format

Share Document