Elastic Guided Waves in Bistable Composite Structures – Experimental and Numerical Investigation

Author(s):  
D.M. Saad ◽  
S. Mustapha ◽  
A. Firouzian ◽  
A. Abdul Aziz

Background: Bistable composite laminates are emerging as smart structures in automotive and aerospace applications. However, the behavior of the wave propagation within such laminates has not been investigated, which hinders their implementation in structural health monitoring (SHM) and non-destructive evaluation (NDE). Objective: As a result, this manuscript examines the propagation behavior of guided waves in bistable composite structures. By understanding the effect of pre-stressing in bistable composite laminates on the characteristics of propagating waves, such as velocity and amplitude, a more knowledgeable decision about their applications in flaw detection and assessment can be made. Methods: The fundamental symmetric (S0) and anti-symmetric (A0) Lamb wave modes were investigated during propagation in two bistable composite laminates, [0/90]T and [02/902]T, and were assessed experimentally and numerically using ABAQUS. For the tested frequencies, which ranged from 60 kHz to 250 kHz, the behavior of the propagating wave was evaluated for both stable configurations and across two different actuators that were lined up with the fiber directions. Signal processing techniques were thus extensively used to enhance the measured signals and identify both the group velocities and the amplitudes’ trend of the S0 and A0 wave modes. Results: Our results showed that there is a minimal variation (typically below 1%) in the amplitude and velocity of the A0 and S0 modes when the composite plates switch between the first stable configuration and the second stable configuration in both composite plates. These results were numerically validated by replicating the bi-stability of the composites. The numerical data were in relatively close agreement (10% average error) with the experimental values and trends. Furthermore, the bistable effect was examined in detail relative to a reference numerical flat (monostable) plate. Although the bistable effect induced a notable amount of internal residual stress, this did not significantly impact the propagating wave modes, with a maximum difference of about 2% when comparing wave velocities. Conclusions: The effect on the wave propagation behavior along different directions of both stable configurations was shown to be minimal. These results, which were validated numerically, clear the ambiguity on the usage of these laminates in experimental health monitoring.

2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Fucai Li ◽  
Haikuo Peng ◽  
Xuewei Sun ◽  
Jinfu Wang ◽  
Guang Meng

A three-dimensional spectral element method (SEM) was developed for analysis of Lamb wave propagation in composite laminates containing a delamination. SEM is more efficient in simulating wave propagation in structures than conventional finite element method (FEM) because of its unique diagonal form of the mass matrix. Three types of composite laminates, namely, unidirectional-ply laminates, cross-ply laminates, and angle-ply laminates are modeled using three-dimensional spectral finite elements. Wave propagation characteristics in intact composite laminates are investigated, and the effectiveness of the method is validated by comparison of the simulation results with analytical solutions based on transfer matrix method. Different Lamb wave mode interactions with delamination are evaluated, and it is demonstrated that symmetric Lamb wave mode may be insensitive to delamination at certain interfaces of laminates while the antisymmetric mode is more suited for identification of delamination in composite structures.


2019 ◽  
Vol 18 (5-6) ◽  
pp. 1789-1802 ◽  
Author(s):  
Subir Patra ◽  
Hossain Ahmed ◽  
Mohammadsadegh Saadatzi ◽  
Sourav Banerjee

In this article, experimental verification and validation of a peridynamics-based simulation technique, called peri-elastodynamics, are presented while simulating the guided Lamb wave propagation and wave–damage interaction for ultrasonic nondestructive evaluation and structural health monitoring applications. Peri-elastodynamics is a recently developed elastodynamic computation tool where material particles are assumed to interact with the neighboring particles nonlocally, distributed within an influence zone. First, in this article, peri-elastodynamics was used to simulate the Lamb wave modes and their interactions with the damages in a three-dimensional plate-like structure, while the accuracy and the efficacy of the method were verified using the finite element simulation method (FEM). Next, the peri-elastodynamics results were validated with the experimental results, which showed that the newly developed method is more accurate and computationally cheaper than the FEM to be used for computational nondestructive evaluation and structural health monitoring. Specifically, in this work, peri-elastodynamics was used to accurately simulate the in-plane and out-of-plane symmetric and anti-symmetric guided Lamb wave modes in a pristine plate and was extended to investigate the wave–damage interaction with damage (e.g. a crack) in the plate. Experiments were designed keeping all the simulation parameters consistent. The accuracy of the proposed technique is confirmed by performing error analysis on symmetric and anti-symmetric Lamb wave modes compared to the experimental results for pristine and damaged plates.


2019 ◽  
Vol 9 (21) ◽  
pp. 4600 ◽  
Author(s):  
Yevgeniya Lugovtsova ◽  
Jannis Bulling ◽  
Christian Boller ◽  
Jens Prager

Guided waves (GW) are of great interest for non-destructive testing (NDT) and structural health monitoring (SHM) of engineering structures such as for oil and gas pipelines, rails, aircraft components, adhesive bonds and possibly much more. Development of a technique based on GWs requires careful understanding obtained through modelling and analysis of wave propagation and mode-damage interaction due to the dispersion and multimodal character of GWs. The Scaled Boundary Finite Element Method (SBFEM) is a suitable numerical approach for this purpose allowing calculation of dispersion curves, mode shapes and GW propagation analysis. In this article, the SBFEM is used to analyse wave propagation in a plate consisting of an isotropic aluminium layer bonded as a hybrid to an anisotropic carbon fibre reinforced plastics layer. This hybrid composite corresponds to one of those considered in a Type III composite pressure vessel used for storing gases, e.g., hydrogen in automotive and aerospace applications. The results show that most of the wave energy can be concentrated in a certain layer depending on the mode used, and by that damage present in this layer can be detected. The results obtained help to understand the wave propagation in multi-layered structures and are important for further development of NDT and SHM for engineering structures consisting of multiple layers.


Author(s):  
Owen M. Malinowski ◽  
Matthew S. Lindsey ◽  
Jason K. Van Velsor

In the past few decades, ultrasonic guided waves have been utilized more frequently Non-Destructive Testing (NDT); most notably, in the qualitative screening of buried piping. However, only a fraction of their potential applications in NDT have been fully realized. This is due, in part, to their complex nature, as well as the high level of expertise required to understand and utilize their propagation characteristics. The mode/frequency combinations that can be generated in a particular structure depend on geometry and material properties and are represented by the so-called dispersion curves. Although extensive research has been done in ultrasonic guided wave propagation in various geometries and materials, the treatment of ultrasonic guided wave propagation in periodic structures has received little attention. In this paper, academic aspects of ultrasonic guided wave propagation in structures with periodicity in the wave vector direction are investigated, with the practical purpose of developing an ultrasonic guided wave based inspection technique for finned tubing. Theoretical, numerical, and experimental methods are employed. The results of this investigation show excellent agreement between theory, numerical modeling, and experimentation; all of which indicate that ultrasonic guided waves will propagate coherently in finned tube only if the proper wave modes and frequencies are selected. It is shown that the frequencies at which propagating wave modes exist can be predicted theoretically and numerically, and depend strongly on the fin geometry. Furthermore, the results show that these propagating wave modes are capable of screening for and identifying the axial location of damage in the tube wall, as well as separation of the fins from the tube wall. The conclusion drawn from these results is that Guided Wave Testing (GWT) is a viable inspection method for screening finned tubing.


2000 ◽  
Author(s):  
Thomas Monnier ◽  
Philippe Guy ◽  
Yves Jayet ◽  
Jean-Claude Baboux ◽  
Michelle Salvia

2017 ◽  
Vol 754 ◽  
pp. 387-390 ◽  
Author(s):  
Nan Yue ◽  
Zahra Sharif Khodaei ◽  
Ferri M.H. Aliabadi

Detectability of damage using Lamb waves depends on many factors such as size and severity of damage, attenuation of the wave and distance to the transducers. This paper presents a detectability model for pitch-catch sensors configuration for structural health monitoring (SHM) applications. The proposed model considers the physical properties of lamb wave propagation and is independent of damage detection algorithm, which provides a generic solution for probability of detection. The applicability of the model in different environmental and operational conditions is also discussed.


Author(s):  
Victor Giurgiutiu

Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive transducers that enable a large class of structural health monitoring (SHM) applications such as: (a) embedded guided wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays; (b) high-frequency modal sensing, i.e., the electro-mechanical (E/M) impedance method; and (c) passive detection (acoustic emission and impact detection). The focus of this paper is on the challenges posed by using PWAS transducers in the composite structures as different from the metallic structures on which this methodology was initially developed. After a brief introduction, the paper reviews the PWAS-based SHM principles. It follows with a discussion of guided wave propagation in composites and PWAS tuning effects. Then, it discusses damage modes in composites. Finally, the paper presents some experimental results with damage detection in composite specimens. Hole damage and impact damage were detected using pitch-catch method with tuned guided waves being sent between a transmitter PWAS and a received PWAS. Root mean square deviation (RMSD) damage index (DI) were shown to correlate well with hole size and impact intensity. The paper ends with summary and conclusion; suggestions for further work are also presented.


1987 ◽  
Vol 109 (2) ◽  
pp. 146-150 ◽  
Author(s):  
P. V. McLaughlin ◽  
M. G. Mirchandani ◽  
P. V. Ciekurs

Research performed to develop thermography as a routine rapid flaw detection tool for large composite structures is presented. The externally applied thermal field (EATF) technique is described whereby surface cracks or sub-surface impact damage creates detectable surface temperature perturbations when heated. EATF thermographic procedures and flaw detection capabilities in multidirectional and unidirectional graphite and glass fiber composites are described. The method’s advantages and limitations are outlined.


Author(s):  
Yanfeng Shen ◽  
Mingjing Cen

Abstract This paper presents a delamination detection strategy for composite plates using linear and nonlinear ultrasonic guided waves via the wave field imaging and signal processing based on Scanning Laser Doppler Vibrometry (SLDV). The anisotropic elastodynamics in composite plates is first studied. Two numerical methods are deployed to analyze the wave mechanics within the composite plates. The Semi-analytical Finite Element (SAFE) method is utilized to obtain the dispersion curves and mode shapes for a carbon fiber composite plate by bonding two quasi-isotropic carbon fiber composite panels together. The Local Interaction Simulation Approach has been employed to investigate the wave propagation and interaction with the delamination. Contact Acoustic Nonlinearity (CAN) between the delamination interfaces during wave damage interaction is presented as a potential mechanism for delamination detection. After developing an in-depth understanding of the wave propagation and wave damage interaction mechanism, active sensing experiments are conducted using the Piezoelectric Wafer Active Sensors (PWAS) and the Scanning Laser Doppler Vibrometry (SLDV). Two delamination imaging methodologies are presented. The first one utilizes the total wave energy to detect the delamination, taking advantage of the trapped modes within the delaminated area. The second one adopts the nonlinear second harmonic imaging algorithm, highlighting the nonlinear interaction traces at the delamination region. The damage detection images are finally compared and fused to provide detailed diagnostic information of the delamination. The damage imaging technique presented in this paper possesses great potential in material evaluation and characterization applications. This paper finishes with summary, concluding remarks, and suggestions for future work.


Sign in / Sign up

Export Citation Format

Share Document