scholarly journals Bioadhesive drug delivery systems: Overview and recent advances

2017 ◽  
Vol 6 (3) ◽  
pp. 2016 ◽  
Author(s):  
Devarshi Brahmbhatt

Bio adhesive systems have gained growing interest due to its ability to localize the drug delivery along with sustained release. This leads to reduction of side-effects due to non-specific targeting. This review provides an overview of the understanding of bioadhesive drug delivery system along with the recent advances in their formulation development.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 837 ◽  
Author(s):  
Shi Su ◽  
Peter M. Kang

Nanotechnologies have attracted increasing attention in their application in medicine, especially in the development of new drug delivery systems. With the help of nano-sized carriers, drugs can reach specific diseased areas, prolonging therapeutic efficacy while decreasing undesired side-effects. In addition, recent nanotechnological advances, such as surface stabilization and stimuli-responsive functionalization have also significantly improved the targeting capacity and therapeutic efficacy of the nanocarrier assisted drug delivery system. In this review, we evaluate recent advances in the development of different nanocarriers and their applications in therapeutics delivery.


2018 ◽  
Vol 3 (1) ◽  
pp. 1-22
Author(s):  
Sabna Kotta ◽  
Navneet Sharma ◽  
Prateek Raturi ◽  
Mohd Aleem ◽  
Rakesh Kumar Sharma

Currently, the concept of lipid-based drug delivery systems has gained much interest because of their capability to deliver drugs which dissolve sparingly in water or insoluble in nature. Several methods of lipid-based drug delivery exist, and each method has its own advantages as well as limitations. The primary objective of the formulation development is to improve the bioavailability of the drug. The nano-sized lipid-based drug delivery systems have enough potential to do so. This article addresses the various barriers to the transportation of drugs through certain routes and also the common excipients which used to develop the lipid-based drug delivery systems. It provides a thorough overview of the lipid formulation classification scheme (LFCS) and also deals with several formulation & evaluation aspects of lipid-based drug delivery system. Further, it focuses on the formulations which are already available in the market and their regulatory concerns, respectively.


2021 ◽  
Vol 28 ◽  
Author(s):  
Wei-Wei Ren ◽  
Shi-Hao Xu ◽  
Li-Ping Sun ◽  
Kun Zhang

: Cancer still represents a leading threat to human health worldwide. The effective usage of anti-cancer drugs can reduce patients’ clinical symptoms and extend the life span. Current anti-cancer strategies include chemotherapy, traditional Chinese medicine, biopharmaceuticals, and the latest targeted therapy. However, due to the complexity and heterogeneity of tumors, serious side effects may result from the direct use of anti-cancer drugs. Besides, the current therapeutic strategies failed to effectively alleviate metastasized tumors. Recently, an ultrasound-mediated nano-drug delivery system has become an increasingly important treatment strategy. Due to its ability to enhance efficacy and reduce toxic side effects, it has become a research hotspot in the field of biomedicine. In this review, we introduced the latest research progress of the ultrasound-responsive nano-drug delivery systems and the possible mechanisms of ultrasound acting on the carrier to change the structure or conformation as well as to realize the controlled release. In addition, the progress in ultrasound responsive nano-drug delivery systems will also be briefly summarized.


Clay Minerals ◽  
2018 ◽  
Vol 53 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Faezeh Hosseini ◽  
Farzaneh Hosseini ◽  
Seyyed Mehdi Jafari ◽  
Azade Taheri

ABSTRACTLocal chemotherapy with biocompatible drug-delivery systems prolongs survival in patients. Due to the biocompatibility and high loading capacity, bentonite nanoclay is a good candidate for the fabrication of drug-delivery vehicles. In this study, doxorubicin-bentonite nanoclay complex (DOX-Bent complex) was prepared for the first time as a sustained-release drug-delivery system for intratumoural chemotherapy of melanoma. An efficient loading of DOX on 1 mg of bentonite nanoclay as high as 994.45 ± 4.9 µg was obtained at a 30:1 DOX:bentonite nanoclay mass ratio. The DOX-Bent complex showed a low initial burst release of DOX in the first 24 h of release, followed by a sustained-release pattern for 21 days. The cumulativein vitrorelease of DOX from the DOX-Bent complex at pHs 6.5 and 7.4 revealed that the DOX-Bent complex can distinguish between tumour and normal tissues and express specific drug release at the tumour site. The results of cytotoxicity experiments indicated that the release pattern of DOX can supply sufficient DOX to inhibit growth of the melanoma cancer cell with an IC50 of 0.29 ± 0.07 µg/mL. It is thus suggested that the DOX-Bent complex be introduced as a drug-delivery system for effective local cancer therapy.


Author(s):  
Md. Mazed Hasan ◽  
Md. Hamiduzzaman ◽  
Ishrat Jahan ◽  
A. H. M. Nazmul Hasan ◽  
Md. Asaduzzaman

Background: The study was aimed to prepare and evaluate tamoxifen loaded controlled release liposomes to reduce the side effects of tamoxifen during cancer treatment.  Methods: Different tamoxifen loaded liposomes were prepared by modified ether injection (MEIM) and thin film hydration method (TFHM) under prescribed conditions. The prepared liposomes were characterized by using optical microscopy, evaluating encapsulation efficiency, in-vitro and ex-vivo diffusion studies by using dialysis membrane and chicken intestinal sac respectively. Results: The data revealed that all of the liposomes were spherical in shape and stable under three physical conditions i.e. 4, 25 and 37 ± 2°C temperatures and 60 ±5% relative humidity. Additionally most of the liposomes followed zero order and class II release kinetics. It was also observed that with the increase of phospholipids and cholesterol, entrapment efficiency of liposome vesicles increased thus giving a controlled release drug delivery system but further increase reduced this efficiency at a certain level. Conclusion: The formulated control release liposomes might be a good drug delivery system for target oriented drug delivery with minimum side effects of tamoxifen during cancer treatment.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2330 ◽  
Author(s):  
Hyeon Myeong Jeong ◽  
Kwon-Yeon Weon ◽  
Beom Soo Shin ◽  
Soyoung Shin

This study aimed to develop a novel oral drug delivery system for gastroretentive sustained drug release by using a capsular device. A capsular device that can control drug release rates from the inner immediate release (IR) tablet while floating in the gastric fluid was fabricated and printed by a fused deposition modeling 3D printer. A commercial IR tablet of baclofen was inserted into the capsular device. The structure of the capsular device was optimized by applying a design of experiment approach to achieve sustained release of a drug while maintaining sufficient buoyancy. The 2-level factorial design was used to identify the optimal sustained release with three control factors: size, number, and height of drug-releasing holes of the capsular device. The drug delivery system was buoyant for more than 24 h and the average time to reach 80% dissolution (T80) was 1.7–6.7 h by varying the control factors. The effects of the different control factors on the response factor, T80, were predicted by using the equation of best fit. Finally, drug delivery systems with predetermined release rates were prepared with a mean prediction error ≤ 15.3%. This approach holds great promise to develop various controlled release drug delivery systems.


2019 ◽  
Vol 43 (2) ◽  
pp. 101-116
Author(s):  
NABANITA MUKHERJEE ◽  
◽  
RITA LALA ◽  
INDRAJIT MUKHERJEE ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document