A Facile Method to Fabricate Size-controllable Whey Protein-based Microgels and Their Application as Oil-in-water Emulsifiers

2021 ◽  
Author(s):  
Yifu Chu ◽  
Yeonji Jo ◽  
Lingyun Chen
Keyword(s):  
Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


2018 ◽  
Vol 9 (9) ◽  
pp. 4683-4694 ◽  
Author(s):  
Chanchan Sun ◽  
Rui Liu ◽  
Huanjing Sheng ◽  
Ruijun Wang ◽  
Zesheng Zhang ◽  
...  

Since lipid digestion is an interfacial process, food emulsions are increasingly being seen as a mechanism for controlling lipid uptake.


2001 ◽  
Vol 49 (11) ◽  
pp. 5576-5583 ◽  
Author(s):  
Stephen R. Euston ◽  
Suzanne R. Finnigan ◽  
Robyn L. Hirst
Keyword(s):  

Soft Matter ◽  
2019 ◽  
Vol 15 (47) ◽  
pp. 9762-9775 ◽  
Author(s):  
Aakash Patel ◽  
Athira Mohanan ◽  
Supratim Ghosh

Sodium caseinate (SC)-stabilized 40% oil-in-water nanoemulsions (NEs) could be transformed into elastic gels below a critical droplet size due to increase in ϕeff by a thicker steric barrier of SC, while whey protein (WPI)-stabilized NEs remained liquid due to thinner steric barrier of WPI.


Sign in / Sign up

Export Citation Format

Share Document