Planning and Implementing Odor Control During Sewer System Inspection, and Rehabilitation Work in a Senstive Resort Setting in Orange County, California – Case Study

2010 ◽  
Vol 2010 (3) ◽  
pp. 313-327
Author(s):  
Robert B. Stallings ◽  
Cherylle Barrido ◽  
Saurabh Shekhar
2012 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanjin Liu ◽  
Giraldo Eugenio

Cultured bacteria addition is one of the technologies used for odor control and FOG (fat, oil, and grease) removal in wastewater collection systems. This study investigated the efficiency of bacterial addition on wastewater odor control by conducting a set of full scale trials in a 60,000 cubic meter per day system for a period of two years. The objectives of this study were: (i) to identify factors that could impact wastewater treatment plant (WWTP) operations due to the effect of bacterial addition in the collection system, (ii) to estimate/understand the level of those impacts, and (iii) to present some interesting findings from the completed case study. The plant operation data before and during the bacterial addition were reviewed. The application of the cultured bacteria presented in the study was found to have significant impacts on the operation of the WWTP in terms of influent biological oxygen demand (BOD) and total suspended solids (TSS) loading, primary settling, sludge production, energy use, dissolved sulfides concentration, and methane production.


1998 ◽  
Vol 37 (1) ◽  
pp. 155-162
Author(s):  
Flemming Schlütter ◽  
Kjeld Schaarup-Jensen

Increased knowledge of the processes which govern the transport of solids in sewers is necessary in order to develop more reliable and applicable sediment transport models for sewer systems. Proper validation of these are essential. For that purpose thorough field measurements are imperative. This paper renders initial results obtained in an ongoing case study of a Danish combined sewer system in Frejlev, a small town southwest of Aalborg, Denmark. Field data are presented concerning estimation of the sediment transport during dry weather. Finally, considerations on how to approach numerical modelling is made based on numerical simulations using MOUSE TRAP (DHI 1993).


2021 ◽  
Vol 13 (7) ◽  
pp. 4078
Author(s):  
María Rocío Ruiz-Pérez ◽  
María Desirée Alba-Rodríguez ◽  
Cristina Rivero-Camacho ◽  
Jaime Solís-Guzmán ◽  
Madelyn Marrero

Urbanization projects, understood as those supplying basic services for cities, such as drinking water, sewers, communication services, power, and lighting, are normally short-term extremely scattered actions, and it can be difficult to track their environmental impact. The present article’s main contribution is to employ the project budgets of public urbanization work to provide an instrument for environmental improvement, thereby helping public procurement, including sustainability criteria. Two urban projects in Seville, Spain are studied: the first substitutes existing services, and the second also includes gardens and playgrounds in the street margins. The methodology finds the construction elements that must be controlled in each project from the perspective of three indicators: carbon, water footprints, and embodied energy. The main impacts found are due to only four construction units: concrete, aggregates, asphalt, and ceramic pipes for the sewer system, that represent 70% or more of the total impact in all indicators studied. The public developer can focus procurement on those few elements in order to exert a lower impact and to significantly reduce the environmental burden of urbanization projects.


2011 ◽  
Vol 64 (5) ◽  
pp. 1081-1088 ◽  
Author(s):  
Manfred Kleidorfer ◽  
Wolfgang Rauch

The Austrian standard for designing combined sewer overflow (CSO) detention basins introduces the efficiency of the combined sewer overflows as an indicator for CSO pollution. Additionally criteria for the ambient water quality are defined, which comprehend six kinds of impacts. In this paper, the Austrian legal requirements are described and discussed by means of hydrological modelling. This is exemplified with the case study Innsbruck (Austria) including a description for model building and model calibration. Furthermore an example is shown in order to demonstrate how – in this case – the overall system performance could be improved by implementing a cost-effective rearrangement of the storage tanks already available at the inflow of the wastewater treatment plant. However, this guideline also allows more innovative methods for reducing CSO emissions as measures for better usage of storage volume or de-centralised treatment of stormwater runoff because it is based on a sewer system simulation.


1999 ◽  
Vol 39 (9) ◽  
pp. 209-216 ◽  
Author(s):  
Manfred Schütze ◽  
David Butler ◽  
M. Bruce Beck

Currently, the sewer system, treatment plant and receiving water body are normally considered as separate units in water quality management. The study reported in this paper analyses the potential of integrated control of the urban wastewater system in its entirety. Assembly and implementation of an integrated simulation and optimisation tool, named SYNOPSIS, are presented. This software package allows water quantity and quality processes in the urban wastewater system to be simulated. Furthermore, optimisation modules included in this tool can be applied for off-line optimisation of control strategies. This procedure is exemplified for a semi-hypothetical case study site. Results obtained for this case study suggest that integrated control of the urban wastewater system can indeed lead to some improvement of its performance. This study demonstrates that a tool is now available for assessment of the potential of integrated control.


2020 ◽  
Vol 10 (12) ◽  
Author(s):  
Hussein Abed Obaid Alisawi

AbstractThe objective of the present study to assess the performance of a suggested sewer line by using pipe jacking system (PJS) in order to enhance the sewage capacity and mitigate sewer flooding of historic pilgrimage city of Karbala, Iraq. The storm water management model (SWMM5) was used for this purpose. The simulation of exiting sewer system reveals that sewer discharge during peak pilgrimage period is more than 200% of the capacity of existing sewer line. Installation of SLL having a diameter of 2.5 m at a depth ranging between 12 and 22 m by PJS can reduce water depth in sewer pipe by 78%. The reduction of water depth at sewer pipe can reduce sewer overflow up to 70%, if the system is installed and managed properly. The methodology proposed in the paper can be applied in any location having similar problem with necessary modifications.


2019 ◽  
Vol 79 (2) ◽  
pp. 231-239 ◽  
Author(s):  
M. Beheshti ◽  
S. Sægrov

Abstract Infiltration and inflow (I/I) of extraneous water in separate sewer systems are serious concerns in urban water management for their environmental, social and economic consequences. Effective reduction of I/I requires knowing where excess water ingress and illicit connections are located. The present study focuses on I/I detection in the foul sewer network of a catchment in Trondheim, Norway, during a period without snowmelt or groundwater infiltration. Fiber-optic distributed temperature sensing (DTS) was used for the first time in Norway to detect I/I sources in tandem with closed-circuit television inspection (CCTV) and smoke testing. DTS was an accurate and feasible method for I/I detection, though it cannot identify exact types of failure and sources of I/I. Therefore, other complementary methods must be used, e.g. CCTV or smoke testing. However, CCTV was not completely useful in confirming the DTS results. This study provides practical insights for the rehabilitation and repair of sewer networks that suffer from the undesirable I/I of extraneous water.


Sign in / Sign up

Export Citation Format

Share Document