scholarly journals Garcinia Mangostana Peel Extract as Sustainable Fuel Source on Ceria Synthesis under Hydrothermal Condition

2019 ◽  
Vol 8 (3) ◽  
pp. 255-261
Author(s):  
Salprima Yudha S ◽  
◽  
Morina Adfa ◽  
Aswin Falahudin ◽  
Deni Agus Triawan ◽  
...  

Cerium (IV) oxide or ceria (CeO2) was fabricated by heating an aqueous extract of Garcinia mangostana and cerium (III) nitrate in hydrothermal autoclave reactor at 200 °C for 3 hours, followed by calcination at 600 °C for 5 hours. The powder X-ray diffraction (XRD) pattern of the precipitate from cerium(III) nitrate under hydrothermal reaction conditions shows no clear XRD peaks, indicating its amorphous nature. In contrast, the products from the calcinated samples exhibit XRD peaks, which correspond to cubic fluorite structure with an average crystal size of 7.55 nm. The elemental mapping using the energy-dispersive X-ray (EDX) analysis reveals the main elements present were cerium and oxygen, with minor impurities in low amounts. The presence of Garcinia mangostana extract is predicted to be the key component and fuel source to obtain CeO2 particles with narrow crystal size.

2011 ◽  
Vol 189-193 ◽  
pp. 1275-1279
Author(s):  
Ying Wang ◽  
Gao Yang Zhao ◽  
Li Yuan

The crystalline phase and morphology of the products formed during the synthesis of yttrium oxide via the hydrothermal treatment yttrium nitrate were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Products with high OH/NO3ratios are formed with the increasing of hydrothermal treatment. The crystalline phases are evolved from Y2(OH)5.14(NO3)0.86•H2O toY4O(OH)9(NO3) and finally Y(OH)3. The hydrothermal reaction conditions play an important role in the synthesis of the microstructures. Results show the particle size and final morphology of samples could be controlled by reaction temperature, reaction time, and OH-concentration. Sheets, hexagonal and needle-like Y2O3powders are obtained with the hydrothermal treatment of yittrium nitrate at 180 oC to 200oC for 2-8 hours at pH 9-13.


2021 ◽  
Vol 22 (2) ◽  
pp. 341-344
Author(s):  
Handan Özlü Torun

CeY0.15Er0.05O2 nanocrystal powders prepared via sol-gel method. Phases identification have been made X-ray diffraction, SEM-EDX, FTIR, thermal and impedance analysis. XRD data show that all powders were obtained with cubic fluorite structure. With the increase of sintering temperature, the unit cell size decreased and the crystal size increased. The particle size was found to be in the range of 150 to 270 nm. It was found that the nitrates and organic species seen in the FTIR results. It was observed that organic species disappeared at sintering temperatures selected according to thermal analysis results. Impedance measurements of the pelletized sample were made. Although the crystal structure properties were good, it was found that the conductivity values were low.


2011 ◽  
Vol 317-319 ◽  
pp. 292-296
Author(s):  
Bao Hua Ji

In order to release the important information on the structural constitution of Japanese precursor, comparative study on structure and properties of Japanese and self-made precursors were carried out by X-ray Diffraction (XRD), infrared spectrometer (FTIR), element content analysis and the breaking tenacity. It was found that Japanese precursor contains cyano group (–CN) and may contain styrene sulfonic acid amine, while not containing the carboxyl and ester carbonyl, that is, not containing MA. The XRD pattern of Japanese precursor around 10° appears a new crystalline diffraction peak, and the crystal size becomes lower. The cross-sectional shapes of Japanese precursor are circle, with uniform and compact structure, thus its mechanical properties is superior.


2011 ◽  
Vol 183-185 ◽  
pp. 2327-2330 ◽  
Author(s):  
De Hui Sun ◽  
De Xin Sun ◽  
Ming Xing Han

In present work, we synthesized monodisperse Fe3O4microsphere using a free-surfactant solvothermal reduction route and investigated effect of the precursor concentration (FeCl3∙6H2O and NaAc) on microsphere sizes under other reaction conditions held constant. The morphologies, structures, and magnetism of the products were characterized by SEM, XRD, FTIR and VSM. The results showed that the Fe3O4 microsphere with a tunable average size range from 120 nm to 300 nm is composed of many Fe3O4collective nanoparticles. Their average diameters increased with increase of precursor FeCl3∙6H2O concentration but decreased with increase of precursor NaAc concentration. The X-ray diffraction (XRD) pattern confirmed that the Fe3O4microspheres belong to cubic structure. Magnetic investigation reveals that the Fe3O4microspheres have higher saturation magnetization and negligible coercivity at room temperature.


2013 ◽  
Vol 750-752 ◽  
pp. 340-343 ◽  
Author(s):  
De Hui Sun ◽  
Jiao Wu ◽  
Ji Lin Zhang

We synthesized Fe3O4 nanoparticles using a solvent thermal method and characterized the morphologies, structures, surface properties, thermal stability and magnetism of the products by Field emission scanning electron microscopy (FE-SEM), Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA) and vibrating sample magnetometer (VSM). The experimental results showed that the Fe3O4 nanoparticles have a tunable average size range from 55 nm to 85 nm. Their diameters decreased with increase of precursor FeCl24H2O concentration or increase of the reaction time under other reaction conditions held constant. The XRD pattern confirmed that the Fe3O4 nanoparticles belong to cubic structure. Magnetic investigation reveals that the Fe3O4 nanoparticles have higher saturation magnetization and negligible coercivity at room temperature.


2012 ◽  
Vol 535-537 ◽  
pp. 398-401
Author(s):  
Yang Zheng ◽  
Jian Fei Zhang

The chitosan/modified nano-TiO2composited antibacterial was prepared by hydrothermal method in this paper. The effects of reaction time and temperature, different kinds of alkali concentration on the reaction function of chitosan and nano-TiO2were studied. Anionic surfactants were used for surface modification of nano-TiO2and the composite reaction conditions of chitosan/modified nano-TiO2were studied preliminarily. The chitosan/modified nano-TiO2composite antibacterial was characterized by Fourier transform infrared spectroscopy (FTIR). The results showed that: under the conditions of the hydrothermal reaction (2mol/L NaOH, 120°C, 8h), the hydrogen bonds were formed between nano-TiO2modified by SDBS and the chitosan molecules The different reaction conditions of nano-TiO2were characterized by X-ray diffraction (XRD). The results showed that: nano-TiO2can be fairly good activated under the conditions of the hydrothermal reaction: 1mol/L NaOH, 120°C, 14h.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jia-Yuan Zhao ◽  
Ning Ren ◽  
Ying-Ying Zhang ◽  
Kun Tang ◽  
Jian-Jun Zhang

A series of new complexes, [Ln (2,4-DMBA)3(5,5′-DM-2,2′-bipy)]2 (Ln = Sm(1), Eu (2)), [Pr (2,4-DMBA)3 (5,5′-DM-2,2′-bipy)]2·0.5(C2H5OH) (3), [Ln (2,4-DMBA)3 (5,5′-DM-2,2′-bipy)]2·0.5(2,4-DMBAH)·0.25(5,5′-DM-2,2′-bipy) (Ln = Tb (4), Dy (5)) (2,4-DMBA = 2,4-dimethylbenzoate, 5,5′-DM-2,2′-bipy = 5,5′-dimethy-2,2′-bipyridine) were synthesized via hydrothermal reaction conditions. The complexes were characterized through elemental analysis, Infrared spectra (IR), Raman (R) spectra, UV-Vis spectra, single X-ray diffraction. Single crystal data show that complexes 1–5 are binuclear complexes, but they can be divided into three different crystal structures. The thermal decomposition mechanism of complexes 1–5 were investigated by the technology of simultaneous TG/DSC-FTIR. What’s more, the luminescent properties of complexes 1–2 and 4 were discussed, and the luminescence lifetime (τ) of complexes 2 and 4 were calculated.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Claudia Maria Simonescu ◽  
Valentin Serban Teodorescu ◽  
Camelia Capatina

This paper presents the obtaining of copper sulfide CuS (covelite) from Cu(CH3COO)2.H2O and thioacetamide (TAA) system. The reaction was conducted in presence or absence of sodium-bis(2-ethylhexyl) sulfosuccinate (Na-AOT). The effects of various reaction parameters on the size and on the shape of nanoparticles have been examined. CuS obtained was characterized by X ray diffraction, IR spectroscopy, TEM � transmission electron microscopy and SAED selected area electron diffraction. The influence of surfactant to the shape and size of CuS (covellite) nanocrystals was established. The size of the nanocrystals varied from 10-60 nm depending on the reaction conditions such as quantity of surfactant.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition, and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases, the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, depending on the crystal size and crystal phase structure.


Sign in / Sign up

Export Citation Format

Share Document