scholarly journals EKSTRAK ETANOL DAUN JERUK PURUT (Citrus hystrix D.C) MENGHAMBAT PERTUMBUHAN Bacillus cereus: UJI IN VITRO

2021 ◽  
Vol 8 (2) ◽  
pp. 70-77
Author(s):  
Ridha Nugraheni ◽  
Noorhamdani Noorhamdani ◽  
Hanif Hanif
Keyword(s):  
2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Musa Saheed Ibrahim ◽  
Beckley Ikhajiagbe

Abstract Background Rice forms a significant portion of food consumed in most household worldwide. Rice production has been hampered by soil factors such as ferruginousity which has limited phosphorus availability; an important mineral component for the growth and yield of rice. The presence of phosphate-solubilizing bacteria (PSB) in soils has been reported to enhance phosphate availability. In view of this, the present study employed three bacteria species (BCAC2, EMBF2 and BCAF1) that were previously isolated and proved P solubilization capacities as inocula to investigate the growth response of rice germinants in an in vitro setup. The bacteria isolates were first identified using 16S rRNA gene sequencing and then applied as inoculum. The inolula were prepared in three concentrations (10, 7.5 and 5.0 ml) following McFarland standard. Viable rice (var. FARO 44) seeds were sown in petri dishes and then inoculated with the three inocula at the different concentrations. The setup was studied for 28 days. Results 16S rRNA gene sequencing identified the isolates as: isolate BCAC2= Bacillus cereus strain GGBSU-1, isolate BCAF1= Proteus mirabilis strain TL14-1 and isolate EMBF2= Klebsiella variicola strain AUH-KAM-9. Significant improvement in rice germination, morphology, physiology and biomass parameters in the bacteria-inoculated setups was observed compared to the control. Germination percentage after 4 days was 100 % in the inoculated rice germinants compared to 65% in the control (NiS). Similarly, inoculation with the test isolates enhanced water-use efficiency by over 40%. The rice seedlings inoculated with Bacillus cereus strain GGBSU-1 (BiS) showed no signs of chlorosis and necrosis throughout the study period as against those inoculated with Proteus mirabilis strain TL14-1 (PiS) and Klebsiella variicola strain AUH-KAM-9 (KiS). Significant increase in chlorophyll-a, chlorophyll-b and alpha amylase was observed in the rice seedlings inoculated with BiS as against the NiS. Conclusion Inoculating rice seeds with Bacillus cereus strain GGBSU-1, Proteus mirabilis strain TL14-1 and Klebsiella variicola strain AUH-KAM-9 in an in vitro media significantly improved growth parameters of the test plant. Bacillus cereus strain GGBSU-1 showed higher efficiency due to a more improved growth properties observed.


2008 ◽  
Vol 76 (4) ◽  
pp. 1358-1367 ◽  
Author(s):  
A. L. Moyer ◽  
R. T. Ramadan ◽  
J. Thurman ◽  
A. Burroughs ◽  
M. C. Callegan

ABSTRACT Most Bacillus cereus toxin production is controlled by the quorum-sensing-dependent, pleiotropic global regulator plcR, which contributes to the organism's virulence in the eye. The purpose of this study was to analyze the effects of B. cereus infection and plcR-regulated toxins on the barrier function of retinal pigment epithelium (RPE) cells, the primary cells of the blood-retina barrier. Human ARPE-19 cells were apically inoculated with wild-type or quorum-sensing-deficient B. cereus, and cytotoxicity was analyzed. plcR-regulated toxins were not required for B. cereus-induced RPE cytotoxicity, but these toxins did increase the rate of cell death, primarily by necrosis. B. cereus infection of polarized RPE cell monolayers resulted in increased barrier permeability, independent of plcR-regulated toxins. Loss of both occludin and ZO-1 expression occurred by 8 h postinfection, but alterations in tight junctions appeared to precede cytotoxicity. Of the several proinflammatory cytokines analyzed, only interleukin-6 was produced in response to B. cereus infection. These results demonstrate the deleterious effects of B. cereus infection on RPE barrier function and suggest that plcR-regulated toxins may not contribute significantly to RPE barrier permeability during infection.


2018 ◽  
Vol 8 (1) ◽  
pp. 01-12
Author(s):  
Amina Kalai ◽  
Fadila Malek ◽  
Leila Bousmaha-Marroki

Bacillus cereus is a foodborne pathogen that often persists in dairy environments and is associated with food poisoning and spoilage. This spore-forming bacterium has a high propensity to develop biofilms onto dairy processing equipment and resists to chemical cleaning and disinfecting. This study deals with the in vitro application of thyme oil-based sanitizer solutions against biofilms formed by B. cereus genotypes which persist in pasteurized-milk processing lines. The effect of Thymus ciliatus essential oil on B. cereus planktonic cells and biofilms was assessed. The oil was tested alone and in combination with organic acids or industrial cleaning agents, in order to improve the removal of B. cereus recurrent genotypes. Minimal inhibitory concentrations of planktonic growth (MICs), biofilm formation (MBIC) and biofilm eradication (MBEC) of oil and organic acids were evaluated by microdilution assays. Thyme oil was more effective than organic acids against B. cereus planktonic growth, biofilm formation and established bio-films. High values of MICs were obtained for the three organic acids tested (3.5-4.5%) in comparison with those of essential oil (0.082-0.088%). The combination of oil with other antimicrobials as acetic acid, NaOH or HNO3 improves their effectiveness against B. cereus biofilms. These oil-based sanitizer solutions allow complete B. cereus biofilm eradication and should be an attractive candidate for the control and removal of biofilms in the dairy envi-ronment.


2017 ◽  
Vol 17 (2) ◽  
Author(s):  
I Made Indra Agastya ◽  
Aminudin Afandhi ◽  
Luqman Qurata Aini

This research was conducted in vitro in the laboratory. Studies conducted in the Laboratory of Bacteriology Department of Plant Pests and Diseases of the Faculty of Agriculture, University of Brawijaya, on the effectiveness of the bacteria Bacillus cereus and Bacillus megaterium as biological pesticides controlling Spodoptera litura. The objective of this study was to determine the effectiveness of the bacteria Bacillus sp as biological control. Effectiveness pesticide was measured by testing the incubation period and mortality in larvae of S. litura instar 3. This study used a completely randomized design (CRD), conducted observations every 6 hours until the larvae dead. The results showed that the percentage of mortality of S. litura reached 94.66% compared to the control, while the incubation time of the bacteria B. cereus cause disease until 29.84 hours. B. cereus and B. megaterium have the ability to incubate third instar larvae of S. litura up to 29.84 hours and caused the death of larvae up to 94.66%. Keywords: Biological pesticides, Bacillus cereus, Bacillus megaterium, entomopatogen, Spodoptera litura


2021 ◽  
Vol 10 (6) ◽  
pp. e2510615268
Author(s):  
Eliandra Mirlei Rossi ◽  
Suelen Caroline Mahl ◽  
Ana Carolina Spaniol ◽  
Jéssica Fernanda Barreto Honorato ◽  
Tauany Rocha

Wheat flour is often used to prepare confectionery and baked goods, however, it can be contaminated by aporulating microorganisms contaminated during harvest or improper storage. The aim of this study was to isolate Bacillus cereus strains from different wheat flour brands and to evaluate their thermoresistance in different confectionery products. It was done in order to investigate the risks posed by food prepared with flour contaminated with B. cereus to consumers’ health. The investigation of B.cereus was realized in five brands of different wheat flours were collected and named A to E. The isolated strains were subjected to boiling tests in vitro to evaluate their thermoresistance. In addition, confectionery products were prepared with flour contaminated with B. cereus strains. These products were subjected to different cooking and B. cereus strain ATCC®30301™ was used as control. Flour brands were contaminated with B. cereus; and counts ranged from 0.25 to 1.57 log CFU/g. The strains presented higher thermoresistance in the confectionery products than in the test conducted in vitro. Based on our results, it was concluded that B. cereus strains are thermoresistant. Moreover, if the flour is contaminated with this bacterium, food products subjected to thermal treatments may remain contaminated. In addition, it is suggested that there is some mechanism (not observed in our study) that could directly influence the thermoresistance of strains found in food.


2012 ◽  
pp. 3176-3183 ◽  
Author(s):  
Oscar Cuéllar G ◽  
Gloria Guerrero A

RESUMENObjetivo. Evaluar la actividad antibacteriana de diferentes fracciones de la cáscara de cacao (Theobroma cacao L.). Materiales y métodos. Se evaluó la actividad antibacteriana mediante el método de difusión en agar de diferentes fracciones de la cáscara de cacao, empleando cepas autóctonas y de referencia ATCC. Posteriormente, se hizo un análisis de estas fracciones por cromatografía líquida de alta eficiencia y cromatografía de gases acoplada a espectrometría de masas. Resultados. La fracción clorofórmica presentó actividad antibacteriana frente a Bacillus cereus ATCC 11778 y Streptococcus agalactiae (autóctona), con porcentajes de inhibición de 34.90% (100 μg/μl) y 52.40% (100 μg/μl) respectivamente. También se evidenció una concentración mínima inhibitoria de 512 μg/ml frente a Bacillus cereus ATCC 11778 y de 128 μg/ml frente a Streptococcus agalactiae. Conclusiones. Este trabajo es el primer reporte a saber en Colombia sobre actividad antibacteriana in vitro de la cáscara de cacao, el cual resulta ser un avance importante para esta agroindustria. Esta investigación abre paso a otros estudios relacionados para establecer el espectro de inhibición frente a otros microorganismos.


2015 ◽  
Vol 82 (1) ◽  
pp. 289-296 ◽  
Author(s):  
Varvara Tsilia ◽  
Frederiek-Maarten Kerckhof ◽  
Andreja Rajkovic ◽  
Marc Heyndrickx ◽  
Tom Van de Wiele

ABSTRACTAdhesion to the intestinal epithelium could constitute an essential mechanism ofBacillus cereuspathogenesis. However, the enterocytes are protected by mucus, a secretion composed mainly of mucin glycoproteins. These may serve as nutrients and sites of adhesion for intestinal bacteria. In this study, the food poisoning bacteriumB. cereusNVH 0500/00 was exposedin vitroto gastrointestinal hurdles prior to evaluation of its attachment to mucin microcosms and its ability to produce nonhemolytic enterotoxin (Nhe). The persistence of mucin-adherentB. cereusafter simulated gut emptying was determined using a mucin adhesion assay. The stability of Nhe toward bile and pancreatin (intestinal components) in the presence of mucin agar was also investigated.B. cereuscould grow and simultaneously adhere to mucin duringin vitroileal incubation, despite the adverse effect of prior exposure to a low pH or intestinal components. The final concentration ofB. cereusin the simulated lumen at 8 h of incubation was 6.62 ± 0.87 log CFU ml−1. At that point, the percentage of adhesion was approximately 6%. No enterotoxin was detected in the ileum, due to either insufficient bacterial concentrations or Nhe degradation. Nevertheless, mucin appears to retainB. cereusand to supply it to the small intestine after simulated gut emptying. Additionally, mucin may play a role in the protection of enterotoxins from degradation by intestinal components.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Marysabel Méndez Acevedo ◽  
Laura M. Carroll ◽  
Manjari Mukherjee ◽  
Emma Mills ◽  
Lingzi Xiaoli ◽  
...  

ABSTRACT Gram-positive, spore-forming members of the Bacillus cereus group species complex are widespread in natural environments and display various degrees of pathogenicity. Recently, B. cereus group strain Bacillus mycoides Flugge ATCC 21929 was found to represent a novel lineage within the species complex, sharing a relatively low degree of genomic similarity with all B. cereus group genomes (average nucleotide identity [ANI] < 88). ATCC 21929 has been previously associated with the production of a patented antibiotic, antibiotic 60-6 (i.e., cerexin A); however, the virulence potential and growth characteristics of this lineage have never been assessed. Here, we provide an extensive genomic and phenotypic characterization of ATCC 21929, and we assess its pathogenic potential in vitro. ATCC 21929 most closely resembles Bacillus paramycoides NH24A2T (ANI and in silico DNA-DNA hybridization values of 86.70 and 34.10%, respectively). Phenotypically, ATCC 21929 does not possess cytochrome c oxidase activity and is able to grow at a range of temperatures between 15 and 43°C and a range of pH between 6 and 9. At 32°C, ATCC 21929 shows weak production of diarrheal enterotoxin hemolysin BL (Hbl) but no production of nonhemolytic enterotoxin (Nhe); at 37°C, neither Hbl nor Nhe is produced. Additionally, at 37°C, ATCC 21929 does not exhibit cytotoxic effects toward HeLa cells. With regard to fatty acid composition, ATCC 21929 has iso-C17:0 present in highest abundance. Based on the characterization provided here, ATCC 21929T (= PS00077AT = PS00077BT = PSU-0922T = BHPT) represents a novel effective B. cereus group species, which we propose as effective species “Bacillus clarus.” IMPORTANCE The B. cereus group comprises numerous closely related lineages with various degrees of pathogenic potential and industrial relevance. Species-level taxonomic classification of B. cereus group strains is important for risk evaluation and communication but remains challenging. Biochemical and phenotypic assays are often used to assign B. cereus group strains to species but are insufficient for accurate taxonomic classification on a genomic scale. Here, we show that antibiotic-producing ATCC 21929 represents a novel lineage within the B. cereus group that, by all metrics used to delineate prokaryotic species, exemplifies a novel effective species. Furthermore, we show that ATCC 21929 is incapable of producing enterotoxins Hbl and Nhe or exhibiting cytotoxic effects on HeLa cells at human body temperature in vitro. These results provide greater insight into the genomic and phenotypic diversity of the B. cereus group and may be leveraged to inform future public health and food safety efforts.


Sign in / Sign up

Export Citation Format

Share Document