scholarly journals Pengaruh Variasi Mutu Beton Bertulang Terhadap Cepat Rambat Gelombang Dengan Menggunakan Metode Non Destructive Test

2020 ◽  
Vol 14 (1) ◽  
pp. 60-69
Author(s):  
A.A. Lingga Ariya D. ◽  
◽  
Indradi Wijatmiko ◽  
Christin Remayanti Nainggolan ◽  
◽  
...  

Preferably in testing, building structures need not be destroyed. Tests that can be used on the concrete can use non-destructive methods that do not damage the test objects. Examples of testing can use UPV tests that are aimed at knowing the quality of concrete from the pulse velocity. The test objects used in this study are reinforced concrete beams with dimensions 20 x 20 x 100 cm. Test objects are differentiated into 3 quality variations of reinforced concrete with quality of concrete12.5 MPa, 18.75 MPa, and 25 MPa. To conduct analysis of the concrete density used PUNDIT PL-200. Ultrasonic pulse velocity into parameters on this test. From the results of the tests, there are differences in the value of different coefficient of the R2 determination. Acquired coefficient value of determination R2 = 0.9076 in direct method. The coefficient value of determination R2 = 0.8718 in the semi-direct method. Coefficient value of determination R2 = 0.3042 at Indirect Method 2 point, and in indirect method 3 point the coefficient value of determination R2 = 0.7524. From this research also obtained comparisons between the three methods, namely between the direct method and the semi-direct method, direct method and indirect method, also semi-direct method and indirect method.

Buildings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 202 ◽  
Author(s):  
Ivan Ivanchev ◽  
Veselin Slavchev

Failures occur in the structures of reinforced concrete buildings and facilities during their continuous exploitation, without being overloaded or exposed to extreme impacts, the most common being cracks. Their detection and change in time are related to the assessment of the state of the structures, their safety, and reliability during their construction and especially for their safety exploitation. This paper describes the results of the experimental studies conducted by authors aiming to verify the possibility of using the non-destructive ultrasonic pulse velocity method (NDUPVM) for detection and evaluation of cracks. Results of an experimental study of 12 reinforced concrete beams are presented. In previous experiments, some of them were subjected to bending until the maximum crack width of 0.3 mm was reached and others until yielding of the longitudinal reinforcement. The results obtained from the measurements of the depths of the normal cracks with different widths with NDUPVM were compared with the visually measured ones. In the present research cracks with the same width and with a similar depth were chosen. The influence of extreme external conditions to the accuracy of the measured crack depths by the NDUPVM was investigated. Non-destructive ultrasonic research was done by a portable device Proceq TICO.


Author(s):  
Saïdou Bamogo ◽  
David Y. K. Toguyeni ◽  
Fati Zoma ◽  
Mohamed Yerbanga

The method used to evaluate the quality of concrete in structures includes, among other things, compressive strength testing of specimens cast on site. This method has shortcomings due to the non-uniformity in their formulation processes of the concrete studied in laboratories and that of the structure on site and the tardiness in obtaining test results. This is why the development of reliable methods of non-destructive assessment of the compressive strength of concrete in situ is essential for a better performance assessment of structures.There are a multitude of non-destructive methods, but in this article, the ultrasonic pulse velocity (UPV) and the rebound hammer (RH) are the methods used as they are easy to get manipulate, accessible and permit fast access to results. Analyses using single and multiple linear regression methods have been carried out with the results from compression tests and measurements of pulse velocity and rebound indices carried out between February and April 2018 on over 90 specimen samples in total. This resulted in correlation equations for the in-situ estimation of the compressive strength of the concrete studied.


2021 ◽  
Vol 11 (9) ◽  
pp. 3747
Author(s):  
Leticia Presa ◽  
Jorge L. Costafreda ◽  
Domingo Alfonso Martín

This work aims to study the relationship between the compression resistance and velocity from ultrasonic pulses in samples of mortars with 25% of pozzolanic content. Pozzolanic cement is a low-priced sustainable material that can reduce costs and CO2 emissions that are produced in the manufacturing of cement from the calcination of calcium carbonate. Using ultrasonic pulse velocity (UPV) to estimate the compressive resistance of mortars with pozzolanic content reduces costs when evaluating the quality of structures built with this material since it is not required to perform an unconfined compression test. The objective of this study is to establish a correlation in order to estimate the compression resistance of this material from its ultrasonic pulse velocity. For this purpose, we studied a total of 16 cement samples, including those with additions of pozzolanic content with different compositions and a sample without any additions. The results obtained show the mentioned correlation, which establishes a basis for research with a higher number of samples to ascertain if it holds true at greater curing ages.


2019 ◽  
Vol 3 (2) ◽  
pp. 135
Author(s):  
Novita Ike Triyuliani ◽  
Sri Murni Dewi ◽  
Lilya Susanti

The innovations strengthening building structures are important topics. Failure in structures such as beams and columns due to time, re-functions of a building, even initial design errors that are weak or lack the safety factor of a building structure. External reinforced concrete beams are one of the beams currently being developed. It is a concrete block with reinforcement of steel reinforcement on the outer (external) of the beam. This study aims to determine the index of increasing beam strength and ductility after retrofitting external steel reinforcement, which has the dimension of beams 15 x 15 x 100 cm, repeating 12 pcs, with external reinforcement each 6 pcs 2Ø6 and 3Ø6. The results from this study are an increasing the index of beam flexural strength after retrofit with external steel reinforcement. Meanwhile, beams after retrofit with 2Ø6 external steel have an average increase index of 1.25 and 1.21 while for external steel 3Ø6 are 1.29 and 1.60 respectively. The ductility depends on the value of ultimate load and maximum deflection that occurs, where the ductility value for the comparison of each specimen experiences a reduction in the average ductility value with 2Ø6 external steel which is 37.74% and 70.95% while with 3Ø6 external steel is 61,65% and 60.62%. Berbagai inovasi upaya peningkatan kekuatan struktur bangunan telah menjadi bahasan yang penting. Kegagalan pada struktur seperti balok dan kolom karena umur, alih fungsi suatu bangunan, bahkan kesalahan desain awal yang lemah atau kurang memenuhi faktor keamanan suatu struktur bangunan. Balok beton bertulangan eksternal adalah salah satu balok yang sedang dikembangkan pada saat ini, yaitu balok beton dengan perkuatan tulangan baja di sisi terluar (eksternal). Penelitian ini bertujuan untuk mengetahui indeks peningkatan kekuatan balok dan daktilitas setelah dilakukan perbaikan menggunakan tulangan baja eksternal, dengan dimensi balok 15 × 15 × 100 cm berulang 12 buah, penambahan tulangan baja eksternal masingmasing 6 buah 2Ø6 dan 3Ø6. Hasil yang didapat dari penelitian ini adalah indeks peningkatan kekuatan lentur balok setelah dilakukan perbaikan menggunakan tulangan baja eksternal. Dimana balok setelah dilakukan perbaikan dengan baja eksternal 2Ø6 memiliki indeks peningkatan rata-rata 1,25 dan 1,21 sedangkan untuk baja eksternal 3Ø6 masing-masing 1,29 dan 1,60. Daktilitas tergantung dari nilai beban ultimit dan lendutan maksimum yang terjadi, dimana nilai daktilitas untuk perbandingan tiap benda uji mengalami reduksi nilai daktilitas rata-rata dengan baja eksternal 2Ø6 yaitu sebesar 37,74% dan 70,95% sedangkan dengan baja eksternal 3Ø6 sebesar 61,65% dan 60,62%.


2021 ◽  
Vol 318 ◽  
pp. 03004
Author(s):  
AbdulMuttalib I. Said ◽  
Baqer Abdul Hussein Ali

This paper has carried out an experimental program to establish a relatively accurate relation between the ultrasonic pulse velocity (UPV) and the concrete compressive strength. The program involved testing concrete cubes of (100) mm and prisms of (100×100×300) cast with specified test variables. The samples are tested by using ultrasonic test equipment with two methods, direct ultrasonic pulse (DUPV) and surface (indirect) ultrasonic pulse (SUPV) for each sample. The obtained results were used as input data in the statistical program (SPSS) to predict the best equation representing the relation between the compressive strength and the ultrasonic pulse velocity. In this research 383 specimens were tested, and an exponential equation is proposed for this purpose. The statistical program has been used to prove which type of UPV is more suitable, the (SUPV) test or the (DUPV) test, to represent the relation between the ultrasonic pulse velocity and the concrete compressive strength. In this paper, the effect of salt content on the connection between the ultrasonic pulse velocity and the concrete compressive strength has also been studied.


There is a substantial curiosity in academia, the investment community and among manufacturers about the exhilarating opportunities offered by nano materials. Although a lot of applications for nanotechnology remain hypothetical, construction is one area where numerous ‘here and now’ applications have already emerged. While existing use is restricted, the market is likely to approach more than 500 million dollars within ten years. Concrete is most likely exceptional in the construction field, that it is the distinct material exclusive to business and hence, is the recipient of a reasonable quantity of research and development capital from the construction industry. SiO2 (Silica) usually is an integral part of concrete in the normal mix. On the other hand, one of the innovations made by the study of concrete at nano scale level is that particle stuffing in concrete can be enhanced by means of adding nano silica (NS), which results in the densification of the micro and nano structure of cementitious composite resulting in enhanced mechanical properties. In this research paper, the result of a thorough investigational analysis on the utilization of NS in addition to cement so that the strength and quality of concrete can improve has been achieved. The effect of various proportions of NS in concrete has been premeditated to evaluate the properties of NS based hardened concrete according to the standard concrete. The obtained outcomes after testing indicate that the addition of NS together with concrete has improved the mechanical behavior of concrete. The NS blended high strength concrete (HSC) shows a better compressive strength (CS) of 66.00 N/mm2 (MPa) after standard twenty eight days, which is an exceptional development over standard concrete. Each and every mixture containing NS in various proportions gave enhanced outcomes in comparison with the standard predictable concrete. RH (Rebound Hammer), UPV (Ultrasonic Pulse Velocity), SEM (Scanning Electron Microscope) and TEM (Transmission Electron Microscope) examinations further authenticate the above results.


2011 ◽  
Vol 243-249 ◽  
pp. 165-169 ◽  
Author(s):  
Iqbal Khan Mohammad

Nondestructive testing (NDT) is a technique to determine the integrity of a material, component or structure. The commonly NDT methods used for the concrete are dynamic modulus of elasticity and ultrasonic pulse velocity. The dynamic modulus of elasticity of concrete is related to the structural stiffness and deformation process of concrete structures, and is highly sensitive to the cracking. The velocity of ultrasonic pulses travelling in a solid material depends on the density and elastic properties of that material. Non-destructive testing namely, dynamic modulus of elasticity and ultrasonic pulse velocity was measured for high strength concrete incorporating cementitious composites. Results of dynamic modulus of elasticity and ultrasonic pulse velocity are reported and their relationships with compressive strength are presented. It has been found that NDT is reasonably good and reliable tool to measure the property of concrete which also gives the fair indication of the compressive strength development.


Sign in / Sign up

Export Citation Format

Share Document