Battery-less biosensing platform

Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 87-89
Author(s):  
Haruichi Kanaya

As fossil fuel levels are exhausted, building a more sustainable world is an issue that is coming to the fore as a crucial consideration in the development of new technology. The energy needs of the planet's population are immense, and an environmentally friendly source of energy is desperately needed. Energy harvesting from renewable sources is not a new concept - windmills have been around since the first century - but the desire to harness renewable energy has intensified. Energy harvesting technology is the term given to technology used for collecting unused energy from the surrounding environment and converting it into electrical power. Solar, wind and hydroelectric power are perhaps the best-known of these technologies. However, there are many other forms of energy that are under developed and hold much potential for powering the future. These include vibration, pressure, heat and temperature difference. While large-scale power generation cannot be realised using these sources due to their low levels, devices with low power demands may be able to harness such energy sources, potentially eliminating the need for an external power source. Dr Haruichi Kanaya at Kyushu University is leading a team investigating wireless technology.

2020 ◽  
Vol 4 (2) ◽  
pp. 46-48
Author(s):  
Nik Fakhri Nek Daud ◽  
Ruzlaini Ghoni

In order to minimize the requirement of external power source and maintenance for electric devices such as wireless sensor networks, the energy harvesting technique based on vibrations has been a dynamic field of studying interest over past years. Researchers have concentrated on developing efficient energy harvesters by adopting new materials and optimizing the harvesting devices. One important limitation of existing energy harvesting techniques is that the power output performance is seriously subject to the resonant frequencies of ambient vibrations, which are often random and broadband. This paper reviews important vibration-to-electricity conversion mechanisms, including theory, modelling methods and the realizations of the piezoelectric, electromagnetic and electrostatic approaches. Different types of energy harvesters that have been designed with nonlinear characteristics are also reviewed. As one of important factors to estimate the power output performance, the energy conversion efficiency of different conversion mechanisms is also summarized. Finally, the challenging issues based on the existing methods and future requirement of energy harvesting are also discussed.


2019 ◽  
Vol 11 (18) ◽  
pp. 4906 ◽  
Author(s):  
Mohammadreza Gholikhani ◽  
Seyed Amid Tahami ◽  
Mohammadreza Khalili ◽  
Samer Dessouky

The convergence of concerns about environmental quality, economic vitality, social equity, and climate change have led to vast interest in the concept of sustainability. Energy harvesting from roadways is an innovative way to provide green and renewable energy for sustainable transportation. However, energy harvesting technologies are in their infancy, so limited studies were conducted to evaluate their performance. This article introduces innovative electromagnetic energy harvesting technology that includes two different mechanisms to generate electrical power: a cantilever generator mechanism and a rotational mechanism. Laboratory experimental tests were conducted to examine the performance of the two mechanisms in generating power under different simulated traffic conditions. The experimental results had approximately root mean square power 0.43 W and 0.04 W and maximum power of 2.8 W and 0.25 W for cantilever and rotational, respectively. These results showed promising capability for both mechanisms in generating power under real traffic conditions. In addition, the study revealed the potential benefits of energy harvesting from roadways to support sustainability in transportation systems. Overall, the findings show that energy harvesting can impact sustainable transportation systems significantly. However, further examination of the large-scale effects of energy harvesting from roadways on sustainability is needed.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Feng Ru Fan ◽  
Wenzhuo Wu

Two-dimensional (2-D) materials of atomic thickness have attracted considerable interest due to their excellent electrical, optoelectronic, mechanical, and thermal properties, which make them attractive for electronic devices, sensors, and energy systems. Scavenging the otherwise wasted energy from the ambient environment into electrical power holds promise to address the emerging energy needs, in particular for the portable and wearable devices. The versatile properties of 2-D materials together with their atomically thin body create diverse possibilities for the conversion of ambient energy. The present review focuses on the recent key advances in emerging energy-harvesting devices based on monolayer 2-D materials through various mechanisms such as photovoltaic, thermoelectric, piezoelectric, triboelectric, and hydrovoltaic devices, as well as progress for harvesting the osmotic pressure and Wi-Fi wireless energy. The representative achievements regarding the monolayer heterostructures and hybrid devices are also discussed. Finally, we provide a discussion of the challenges and opportunities for 2-D monolayer material-based energy-harvesting devices in the development of self-powered electronics and wearable technologies.


Energy harvesting is the technology to extract energy from environment with many surrounding sources of energy. From these sources it is used to extract less electrical power energy and boost up tiny electrical systems or amount of energy stored in a battery. Many methods in energy harvesting among one of the method for harvesting energy is piezoelectric transducers. Energy harvesting depends upon so many factors like conducting circuit, number of sensors, and coupling coefficient of piezoelectric sensors with electromechanical. For large scale applications, one of the best suited technique energy harvesting .


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pejman Eghbali ◽  
Davood Younesian ◽  
Armin Moayedizadeh ◽  
Mostafa Ranjbar

Abstract Piezoelectric (PZT) components are one of the most popular elements in vibration sensing and also energy harvesting. They are very well established, cost effective and available in different geometries however there are still several challenges in their application particularly in vibration energy harvesting. They are normally narrow-band elements and work in high-frequency range. Their efficiency and power extraction density are also generally low compared with different electromagnetic techniques. Auxetic structures are proposed here to enhance efficiency of the piezoelectric circular patches in vibration energy harvesting. These kinds of patches namely PZT buzzers are inexpensive (less than 10 USD) elements and easily available. Two novel circular auxetic substrates are proposed to improve power extraction capacity of the conventional piezoelectric buzzers. Negative Poison’s ratio of the proposed meta-structure helps in efficiency enhancement. The concept is introduced, analyzed and verified through the finite element modeling and experimental testing. The idea is proved to work by comparing the harvested electrical power in the auxetic design against the conventional plain system. A parametric study is then carried out and effects of important electrical and geometrical parameters as well as the material property on the power extraction efficiency are assessed to arrive at optimum parameters. It is shown that by employing the auxetic design, a remarkable improvement in the harvested power is achievable. It is shown that for the two proposed auxetic designs, at the resonance frequency, we could reach to 10.2 and 13.3 magnification factor with respect to the plain energy harvester. Another important feature is that the resonant frequency in these new designs is very much lower than the conventional resonators. Results of this study can open a new path to application of inexpensive PZT buzzers in large-scale vibration energy harvesting.


2020 ◽  
Author(s):  
Pranav C

UNSTRUCTURED The word blockchain elicits thoughts of cryptocurrency much of the time, which does disservice to this disruptive new technology. Agreed, bitcoin launched in 2011 was the first large scale implementation of blockchain technology. Also, Bitcoin’s success has triggered the establishment of nearly 1000 new cryptocurrencies. This again lead to the delusion that the only application of blockchain technology is for the creation of cryptocurrency. However, the blockchain technology is capable of a lot more than just cryptocurrency creation and may support such things as transactions that require personal identification, peer review, elections and other types of democratic decision-making and audit trails. Blockchain exists with real world implementations beyond cryptocurrencies and these solutions deliver powerful benefits to healthcare organizations, bankers, retailers and consumers among others. One of the areas where blockchain technology can be used effectively is healthcare industry. Proper application of this technology in healthcare will not only save billions of money but also will contribute to the growth in research. This review paper briefly defines blockchain and deals in detail the applications of blockchain in various areas particularly in healthcare industry.


2015 ◽  
Vol 51 (1) ◽  
pp. 121-132 ◽  
Author(s):  
S. Spitans ◽  
E. Baake ◽  
B. Nacke ◽  
A. Jakovičs

2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


2021 ◽  
Vol 13 (4) ◽  
pp. 2225
Author(s):  
Ralf Peters ◽  
Janos Lucian Breuer ◽  
Maximilian Decker ◽  
Thomas Grube ◽  
Martin Robinius ◽  
...  

Achieving the CO2 reduction targets for 2050 requires extensive measures being undertaken in all sectors. In contrast to energy generation, the transport sector has not yet been able to achieve a substantive reduction in CO2 emissions. Measures for the ever more pressing reduction in CO2 emissions from transportation include the increased use of electric vehicles powered by batteries or fuel cells. The use of fuel cells requires the production of hydrogen and the establishment of a corresponding hydrogen production system and associated infrastructure. Synthetic fuels made using carbon dioxide and sustainably-produced hydrogen can be used in the existing infrastructure and will reach the extant vehicle fleet in the medium term. All three options require a major expansion of the generation capacities for renewable electricity. Moreover, various options for road freight transport with light duty vehicles (LDVs) and heavy duty vehicles (HDVs) are analyzed and compared. In addition to efficiency throughout the entire value chain, well-to-wheel efficiency and also other aspects play an important role in this comparison. These include: (a) the possibility of large-scale energy storage in the sense of so-called ‘sector coupling’, which is offered only by hydrogen and synthetic energy sources; (b) the use of the existing fueling station infrastructure and the applicability of the new technology on the existing fleet; (c) fulfilling the power and range requirements of the long-distance road transport.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 219
Author(s):  
Phuoc Duc Nguyen ◽  
Lok-won Kim

People nowadays are entering an era of rapid evolution due to the generation of massive amounts of data. Such information is produced with an enormous contribution from the use of billions of sensing devices equipped with in situ signal processing and communication capabilities which form wireless sensor networks (WSNs). As the number of small devices connected to the Internet is higher than 50 billion, the Internet of Things (IoT) devices focus on sensing accuracy, communication efficiency, and low power consumption because IoT device deployment is mainly for correct information acquisition, remote node accessing, and longer-term operation with lower battery changing requirements. Thus, recently, there have been rich activities for original research in these domains. Various sensors used by processing devices can be heterogeneous or homogeneous. Since the devices are primarily expected to operate independently in an autonomous manner, the abilities of connection, communication, and ambient energy scavenging play significant roles, especially in a large-scale deployment. This paper classifies wireless sensor nodes into two major categories based the types of the sensor array (heterogeneous/homogeneous). It also emphasizes on the utilization of ad hoc networking and energy harvesting mechanisms as a fundamental cornerstone to building a self-governing, sustainable, and perpetually-operated sensor system. We review systems representative of each category and depict trends in system development.


Sign in / Sign up

Export Citation Format

Share Document