scholarly journals MODEL OF THE PROCESS OF FUNCTIONING OF THE INFORMATION PROTECTION SYSTEM FROM UNAUTHORIZED ACCESS CREATED IN THE SOFTWARE ENVIRONMENT OF IMITATION MODELING "CPN TOOLS"

Author(s):  
O. I. Bokova ◽  
I. G. Drovnikov ◽  
A. D. Popov ◽  
E. A. Rogozin

Objectives. At present, conducting a computational experiment on a system for protecting information from unauthorized access operated in an automated system is a time consuming process. The greatest difficulty in this area of research is the determination of probabilistic-temporal characteristics and the formation of reports during the operation of the information protection system. In order to analyze, obtain and study the probabilistic-time characteristics of this system, it is necessary to develop a mathematical model of its operation using an imitational modeling tool.Method. One of the methods for solving this problem is a computational experiment, which is based on the construction of a simulation model. The CPN Tools environment was chosen as a software simulation product, the main advantages of which are: a high level of visualization, the ability to generate various reports on the system operation, fast modifiability of models for solving a different class of problems, as well as integration with other software means for the formation of graphical dependencies.Result. A simulation model of the system for protecting information from unauthorized access in the “CPN Tools” software environment was developed. protected performance.Conclusion. The presented im-model model of protecting information from unauthorized access in the software environment “CPN Tools” can be used as a tool in assessing the security of special bodies for the attestation of informatization objects and structural divisions of authorized departments. It can also be used in the design of such systems in order to prevent logical errors, determine their temporal characteristics and compare with the existing ones in accordance with the technical specifications for the system being developed to protect information from unauthorized access.

Author(s):  
V. P. Alferov ◽  
A. V. Butskikh ◽  
A. V. Krisilov ◽  
A. D. Popov ◽  
E. A. Rogozin

Abstract. Aim Currently, the implementation of computational experiments to determine the probabilistic-temporal characteristics of protection functions for automated information systems is a complex and costly task. In order to study the dynamics of transitions between the states of this type of system, it is necessary to develop a mathematical model and an algorithm for computing the corresponding characteristics.Method. To achieve this goal, a mathematical model of the information security system was developed in the MATLAB software environment. The main advantages of this software environment consist in a high level of visualisation, the ability to modify models to analyse other systems of this type and the availability of integration tools with other software products.Results. The article presents a numerical and analytical model of a system for protecting information from unauthorised access. The functional dynamics of the system are described using a stochastic Petri net. In order to solve the integral equations and determine the probabilities of reaching the final state in a given time, the Laplace transform is used. The solution is carried out in an analytical mode to obtain an explicit form of the dependences of the probability-time characteristics of the system on the probabilities of transitions between states and the average times the system stays in each state. The paper presents the results of calculating the probability-time characteristics of the “Turning on the personal computer and user identification” subsystem of the “Guard NT” system for preventing unauthorised access to information.Conclusion. The developed model, which can be used to study the dynamics of transitions between states of an information protection system against unauthorised access in an automated system, as well as to optimise the time it takes to complete functional tasks, can also be used to improve the operational efficiency of these systems.


2019 ◽  
Vol 26 (3) ◽  
pp. 80-89 ◽  
Author(s):  
Oksana I. Bokova ◽  
Dmitry I. Korobkin ◽  
Sergey A. Kukharev ◽  
Anton D. Popov

Author(s):  
A. I. Tatarinov

With the help of the general and structurally-information schemes of remote control, an analysis was made in the course of which the requirements for protection against unauthorized access of the complex system were clarified and established. In the article structural features of the remote control system of mobile measuring points of rocket and space equipment are considered. These features are represented by the requirements for information protection, as well as the operating modes of this system. The list of these regimes was obtained as a result of studies of structural and functional schemes of a remote control system for mobile measuring points.


Author(s):  
Алексей Горлов ◽  
Aleksey Gorlov ◽  
Михаил Рытов ◽  
Mikhail Rytov ◽  
Дмитрий Лысов ◽  
...  

This article discusses the process of automating the assessment of the effectiveness of software and hardware information protection by creating an automated system. The main functions of the proposed system are: conducting an audit of information security, forming a model of information security threats, forming recommendations for creating a software and hardware system for protecting information, and creating organizational-technical documentation. The developed automated system for evaluating the effectiveness of software and hardware protection of information allows in an automated way to build a model of information security threats, to form organizational and technical documentation governing the protection of confidential information, and also to make recommendations for improving the software and hardware system for protecting information. The use of this system will significantly reduce the time and material costs of auditing information security and developing additional measures to protect information.


Author(s):  
Jakub MICHALSKI ◽  
Zbigniew SURMA ◽  
Marta CZYŻEWSKA

This paper presents a selection of deliverables of a research project intended to develop a technology demonstrator for an active protection system smart counterprojectile. Numerical simulations were completed to analyse the effects of geometry and weight of the counterprojectile warhead on the counterprojectile flight (motion) parameters. This paper investigates four variants of the counterprojectile warhead shape and three variants of the counterprojectile warhead weight. Given the investigated geometric and weight variants, the PRODAS software environment was used to develop geometric models of the counterprojectile warhead, followed by the determination of the model aerodynamic characteristics. The final deliverable of this work are the results of the numerical simulation of the counterprojectile motion along the initial flight path length. Given the required activation of the active protection system in direct proximity of the protected object, the analyses of counterprojectile motion parameters were restricted to a distance of ten-odd metres from the counterprojectile launching system.


Sign in / Sign up

Export Citation Format

Share Document