scholarly journals О токовой зависимости эффективности инжекции и относительном вкладе скорости эмиссии и внутренних оптических потерь в насыщение ватт-амперной характеристики мощных импульсных лазеров (λ=1.06 мкм)

Author(s):  
А.В. Рожков

The results of numerical simulation of the current dependence of the injection efficiency in the active area of the laser based on separate confinement heterostructures are presented. The feature of the transfer of charge carriers through isotype N-n heterotransitions on the interface boundary of waveguide and active areas is shown. Using the classic dependencies of the Drude-Lorentz theory, the cross-section of electrons and holes for the GaAs waveguide was evaluated. The resulting values of σe= 1.05∙10-18 cm2 and σp= 1.55∙10-19 cm2 and current dependencies of the injection efficiency allowed to determine the root-cause reason for the pulse power saturation of semiconductor lasers. It has been established that saturation of power-current characteristics is dominated by holes escape from the active region to the waveguide and internal optical losses are lower confinement factors.

2003 ◽  
Vol 792 ◽  
Author(s):  
Galina Khlyap ◽  
Mikhail Andrukhiv ◽  
Ludmila Panchenko

ABSTRACTMetal-semiconductor structures based on composite semiconductors A1B5C6 are investigated as possible γ-ray detectors. Electric measurements carried out on the samples before the irradiation have exhibited no special peculiarities. After irradiation the analogous investigations have shown dramatic changes of charge carriers transport. Numerical analysis showed the field-current characteristics similar to the p-n-homo-junction: the forward current is described by the power law I∼(Fa)3/2, where Fa stands for applied electric field. Under reverse bias two clear modes of the carriers transport are observed: under the so-called threshold field FTR ∼ 300 V/m the experimental current is governed by quasi-ohmic law I∼(Fa)0.8; as the applied field exceeds the threshold value, the field-current dependence points out the strong trap-assistant tunneling processes: I∼(Fa)5.


Author(s):  
E. Widener ◽  
S. Tatti ◽  
P. Schani ◽  
S. Crown ◽  
B. Dunnigan ◽  
...  

Abstract A new 0.5 um 1 Megabit SRAM which employed a double metal, triple poly CMOS process with Tungsten plug metal to poly /silicon contacts was introduced. During burn-in of this product, high currents, apparently due to electrical overstress, were experienced. Electrical analysis showed abnormal supply current characteristics at high voltages. Failure analysis identified the sites of the high currents of the bum-in rejects and discovered cracks in the glue layer prior to Tungsten deposition as the root cause of the failure. The glue layer cracks allowed a reaction with the poly/silicon, causing opens at the bottom of contacts. These floating nodes caused high currents and often latch-up during burn-in. Designed experiments in the wafer fab identified an improved glue layer process, which has been implemented. The new process shows improvement in burn in performance as well as outgoing product quality.


Author(s):  
Tsan-Chang Chuang ◽  
Cha-Ming Shen ◽  
Shi-Chen Lin ◽  
Chen-May Huang ◽  
Jin-Hong Chou ◽  
...  

Abstract Scanning capacitance microscopy (SCM) is a 2-D carrier and/or dopant concentration profiling technique under development that utilizes the excellent spatial resolution of scanning probe microscopy. However, PV-SCM has limited capability to achieve the goal due to inherent "plane" trait. On top of that, deeper concentration profile just like deep N-well is also one of restrictions to use. For representing above contents more clearly, this paper presents a few cases that demonstrate the alternated and optimized application of PV-SCM and X-SCM. The case studies concern Joint Test Action Group failure and stand-by failure. These cases illustrate that the correct selection from either plane-view or cross-sectional SCM analysis according to the surrounding of defect could help to exactly and rapidly diagnose the failure mechanism. Alternating and optimizing PV-SCM and X-SCM techniques to navigate various implant issue could provide corrective actions that suit local circumstance of defects and identify the root cause.


2014 ◽  
Vol 1061-1062 ◽  
pp. 431-435
Author(s):  
Xiao He

An actual case of PTH fracture after soldering process was studied. By means of cross section analysis using metallography microscope and SEM, together with thermal analysis results, root cause of PTH fracture was concluded that a high density of twin copper weakened the mechanical strength so seriously that PTHs could not undergo thermal stress from soldering process, and higher CTE was attributed to an accelerative factor. Moreover, it is recommended to enhance current density properly and make sure the effectiveness of electroplating additives to prevent twin copper by theoretical analysis.


2021 ◽  
Vol 51 (2) ◽  
pp. 129-132
Author(s):  
P S Gavrina ◽  
A A Podoskin ◽  
E V Fomin ◽  
D A Veselov ◽  
V V Shamakhov ◽  
...  

2015 ◽  
Vol 2015 (1) ◽  
pp. 000675-000684
Author(s):  
Rama Hegde ◽  
Anne Anderson ◽  
Sam Subramanian ◽  
Andrew Mawer ◽  
Ed Hall ◽  
...  

In-process failures were experienced during printed circuit board (PCB) SMT assembly of a 16 Quad Flat No Leads (QFN) device. The failures appeared to be solderability related with QFN unit I/O pads not soldering robustly and sometimes leading to QFN detachment following board mounting. When assembly did take place on affected QFN units, the resulting solder joint was observed to be weak. This paper reports on very systematic analyses of the QFN device I/O pads using optical inspections, AES surface, AES depth profiling, SEM/EDX, SIMS, FIB and TEM cross-sectional measurements to determine the root cause of the failure and the failure mechanism. The detached QFN units, suspect and good unsoldered units, passing and failing units obtained from customers were examined. The industry standard surface mount solderability testing was performed on good and suspect parts, and all were observed to pass as evidenced by >95% coverage of the I/O pads. Optical inspections and a wide variety of physical analysis of the pads on fresh parts showed no anomalies with only the expected Au over Pd over Ni found. AES analysis was performed including depth profiling to look for any issues in the NiPdAu over base Cu plating layers that could be contributing the solderability failures. The AES depth profiling indicated AuPd film on the Ni under layer for the I/O pads as expected. No unexpected elements or oxide layers were observed at any layer. Then, one failing and one passing units were compared by doing FIB cross-section, FIB planar section and TEM cross-section analysis. The cross-sectional analysis showed rough Ni surface for the failing units, while the Ni surface was relatively smooth for the passing unit. Further, finer Cu grains and Ni grains were observed on the passing units. Additionally, the lead frame fabrication process mapping showed rough Cu, Ni “texturing” and use of low electro chemical polishing (ECP) current on the bad units compared to that of the good units. All affected bad units were confirmed coming from a second source Cu supplier with the rough Cu. The weak and irregular NiSn IMC formation on the bad units caused IMC separation and possible spalling during board solder reflow primarily due to the rough base Cu and irregular grain sizes and resulting lower ECP lead frame plating current. A possible final factor was marginally low Pd thickness. In conclusion, the 16 QFN device solderability failure root cause summary and the lessons learned from a wide variety of analysis techniques will be discussed.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4303 ◽  
Author(s):  
Hao Tang ◽  
Guangning Wu ◽  
Ming Chen ◽  
Jiang Deng ◽  
Xining Li

This paper presents analysis, diagnosis and disposal with a typical internal breakdown failure of the resin impregnated paper (RIP) valve side bushing in high voltage direct current (HVDC) converter transformer. Based on the analysis of fault current characteristics at the time of the RIP valve side bushing failure, and field test results of insulation parameters, a method of diagnosing typical breakdown failures of valve side bushings is proposed. Through disassembly inspection of the internal overheating and arcing traces on the failure bushing, the root cause of this typical breakdown failure is found, which is upper axial flashover along the RIP condenser/SF6 interface caused by the abnormal contact of two current-carrying conductive tubes. Temperature distribution inside the bushing with an abnormal contact resistance between the copper conductive tube and aluminum conductive tube under different load current is simulated by using the finite element method. An special device is also developed for repairing defective bushing on-site, and 75 bushings with conductive contact defects have been repaired on the premise of not pushing converter transformers away from the valve hall and even without pulling out defective bushings.


2014 ◽  
Vol 44 (2) ◽  
pp. 149-156 ◽  
Author(s):  
P V Gorlachuk ◽  
A V Ivanov ◽  
V D Kurnosov ◽  
K V Kurnosov ◽  
V I Romantsevich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document