scholarly journals Влияние механического воздействия на рельеф поверхности металлического стекла Fe-=SUB=-77-=/SUB=-Ni-=SUB=-1-=/SUB=-Si-=SUB=-9-=/SUB=-B-=SUB=-13-=/SUB=-

2019 ◽  
Vol 61 (4) ◽  
pp. 708
Author(s):  
В.Е. Корсуков ◽  
А.В. Анкудинов ◽  
В.И. Бетехтин ◽  
П.Н. Бутенко ◽  
В.Н. Вербицкий ◽  
...  

AbstractThe micro- and nanoreliefs of the loaded surfaces of a Fe_77Ni_1Si_9B_13 metal glass are probed via scanning tunneling and atomic force microscopies, scanning electron microscopy, and X-ray fluorescence. The fractal characteristics of surfaces are evaluated via the multifractal approach. As found, the variations in a singularity spectrum width, calculated from the tunneling and atomic force microscopies, may be useful for predicting the forthcoming fracture. An increase in the breaking strength of ribbons subjected to hydrostatic compression is due to decreasing microporosity of a near-surface layer, which corresponds to the surface smoothing.

2006 ◽  
Vol 965 ◽  
Author(s):  
X. R. Qin ◽  
A. Tersigni ◽  
J. Shi ◽  
D. T. Jiang

ABSTRACTScanning tunneling microscopy (STM), atomic force microscopy (AFM) and near-edge x-ray absorption fine structure (NEXAFS) have been used to study the structure of tetracene films on hydrogen-passivated Si(001). A distinct growth morphology change that occurs around a few monolayers of film thickness was characterized. This coverage-dependent film structural phase transition leads to a molecularly ordered film structure commensurate with the crystalline substrate.


2017 ◽  
Vol 114 (13) ◽  
pp. E2556-E2562 ◽  
Author(s):  
Martin Setvin ◽  
Jan Hulva ◽  
Gareth S. Parkinson ◽  
Michael Schmid ◽  
Ulrike Diebold

Activation of molecular oxygen is a key step in converting fuels into energy, but there is precious little experimental insight into how the process proceeds at the atomic scale. Here, we show that a combined atomic force microscopy/scanning tunneling microscopy (AFM/STM) experiment can both distinguish neutral O2 molecules in the triplet state from negatively charged (O2)− radicals and charge and discharge the molecules at will. By measuring the chemical forces above the different species adsorbed on an anatase TiO2 surface, we show that the tip-generated (O2)− radicals are identical to those created when (i) an O2 molecule accepts an electron from a near-surface dopant or (ii) when a photo-generated electron is transferred following irradiation of the anatase sample with UV light. Kelvin probe spectroscopy measurements indicate that electron transfer between the TiO2 and the adsorbed molecules is governed by competition between electron affinity of the physisorbed (triplet) O2 and band bending induced by the (O2)− radicals. Temperature–programmed desorption and X-ray photoelectron spectroscopy data provide information about thermal stability of the species, and confirm the chemical identification inferred from AFM/STM.


1993 ◽  
Vol 8 (10) ◽  
pp. 2587-2599 ◽  
Author(s):  
B.K. Annis ◽  
D.F. Pedraza ◽  
S.P. Withrow

Highly oriented pyrolytic graphite has been implanted at room temperature with 165 keV C+-ions at doses from 6 × 1017 to 3 × 1019 ions/m2. Implantation-induced topographical changes of differing size scales were studied by optical, scanning electron, scanning tunneling, and atomic force microscopies. Defects with atomic resolution are seen for the lower dose implants. The formation of a vacancy line is revealed for the first time. At the higher doses a dendrite-like system of deep surface cracks is observed. This cracking develops as a result of the large basal plane contraction produced by irradiation which generates high shearing stresses between the implanted, damaged surface layer and the underlying material. Two independent systems of ridges have been characterized. One appears to follow a crystallographic direction while the other appears as a dense, intricate, generally curvilinear network with short ramifications. Additional experiments in which both the ion energy and dose rate have been varied indicate that ridge evolution progresses with increased energy and fluence, but is independent of dose rate. It is suggested that the ridge networks may form as a result of C transport by diffusion from the heavily damaged near-surface region or of a tectonic-plate-like motion or both. The geometric features of the ridge networks are related to the subsurface radiation damage as well.


2006 ◽  
Vol 911 ◽  
Author(s):  
Serguei Soubatch ◽  
Wai Y. Lee ◽  
Martin Hetzel ◽  
Chariya Virojanadara ◽  
Camilla Coletti ◽  
...  

AbstractA-plane (11-20) and diagonal cut (1-102) and (-110-2) surfaces of 4H-SiC have been investigated using atomic force microscopy (AFM), low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM). After hydrogen etching the surfaces show large, flat terraces. On SiC(11-20) steps down to single atomic heights are observed. On the diagonal cut surfaces steps run parallel and perpendicular to the [-1101] direction, yet drastically different morphologies for the two isomorphic orientations are found. All surfaces immediately display a sharp LEED pattern. For SiC(1-102) and SiC(-110-2) the additional significant presence of oxygen in the AES spectra indicates the development of an ordered oxide. All three surfaces show an oxygen free, well ordered surface after Si deposition and annealing. A transformation between different surface phases is observed upon annealing.


1993 ◽  
Vol 312 ◽  
Author(s):  
Wayne A. Bryden ◽  
Marilyn E. Hawley ◽  
Scott A. Ecelberger ◽  
Thomas J. Kistenmacher

AbsiractThe evolution of the growth morphology of thin films of InN on (00.1) sapphire and on (00.1) sapphire prenudeated by a layer of AIN have been followed as a function of the thickness of the InN overlayer. The InN thin films and the AIN nucleation layers were deposited by reactive magnetron sputtering and first characterized by X-ray scattering, profilometry, and electrical transport. These AIN-nucleated InN films displayed heteroepitaxial grains, and high Hall mobility -even in the limit of InN overlayer on the order of 20-40Å. In parallel, InN films of varying thickness were grown directly onto (00.1) sapphire. These films showed a mixture of textured and heteroepitaxial grains, and lower Hall mobility. Atomic force and scanning tunneling microscopy studies have focussed on the morphology of the InN films with thicknesses: (a) much smaller than the AIN nucleation layer; and, (b) near the morphological transition that occurs at ∼1μm and has been attributed to the crossover from a 2D to a 3D growth mechanism. Additional correlations of X-ray structural coherence with growth mode are also examined.


Author(s):  
Steve Lindaas ◽  
Chris Jacobsen ◽  
Alex Kalinovsky ◽  
Malcolm Howells

Soft x-ray microscopy offers an approach to transmission imaging of wet, micron-thick biological objects at a resolution superior to that of optical microscopes and with less specimen preparation/manipulation than electron microscopes. Gabor holography has unique characteristics which make it particularly well suited for certain investigations: it requires no prefocussing, it is compatible with flash x-ray sources, and it is able to use the whole footprint of multimode sources. Our method serves to refine this technique in anticipation of the development of suitable flash sources (such as x-ray lasers) and to develop cryo capabilities with which to reduce specimen damage. Our primary emphasis has been on biological imaging so we use x-rays in the water window (between the Oxygen-K and Carbon-K absorption edges) with which we record holograms in vacuum or in air.The hologram is recorded on a high resolution recording medium; our work employs the photoresist poly(methylmethacrylate) (PMMA). Following resist “development” (solvent etching), a surface relief pattern is produced which an atomic force microscope is aptly suited to image.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


Sign in / Sign up

Export Citation Format

Share Document