scholarly journals Анализ структурной эволюции порошков оксида цинка, полученных методом механического высокоэнергетического размола

2019 ◽  
Vol 89 (9) ◽  
pp. 1406
Author(s):  
И.А. Аверин ◽  
И.А. Пронин ◽  
Н.Д. Якушова ◽  
А.А. Карманов ◽  
М.М. Сычев ◽  
...  

AbstractZinc oxide powders made by mechanical high-energy grinding have been investigated using the methods of scanning electron microscopy, thermal nitrogen desorption, and Raman spectroscopy of infrared Fourier spectroscopy. Their structural evolution, including reduction of the average size of crystallites, increase in specific surface area, as well as changes in the number and ratio of adsorption centers, has been demonstrated. The data on the reconstruction of the surface of zinc oxide powders and multiple bond breaking in near-surface areas resulting from long-term dispersion have been presented.

2019 ◽  
Vol 64 (9) ◽  
pp. 1330-1335
Author(s):  
I. A. Averin ◽  
I. A. Pronin ◽  
N. D. Yakushova ◽  
A. A. Karmanov ◽  
M. M. Sychev ◽  
...  

Author(s):  
Christina Gerometta ◽  
Stephen P. Gent ◽  
Michael P. Twedt

This study investigates the effects of torrefaction temperature and time on the energy content and storage stability of bio-char derived from corn stover feedstock. The batch torrefaction system in this study uses 91.4 cm × 25.4 cm diameter reactors with electrical heating elements to torrefy large samples of corn stover. The reactor is typically loaded with 0.5 kg samples of chopped corn stover (stalks, leaves, and cobs) with particle surface areas ranging from 0.5–2.4 cm2. The operating temperatures range from 230–340 degrees C, while the operating times range from 30–60 minutes. After each reaction trial, the energy content of the bio-char is quantified using the heat of combustion value obtained from bomb calorimeter tests on each of the samples. Values from these tests are compared to previous research to investigate the feasibility of larger-scale torrefaction reactions with mixed component stover. Temperature and time profiles are obtained from an Arduino output to investigate temperature behaviors during the reaction. The temperature and energy content can provide the basis for defining the phases of torrefaction. The long-term goal of this research is to assess the viability of producing a high energy, storable bio-char as well as a usable biogas from the torrefaction process of corn stover feedstocks. Since compounds within the corn stover have different reaction rates, a composition analysis of samples at various stages in torrefaction will indirectly provide information on the usability of the biogas and behaviors of organic compounds in the reaction. Therefore, the torrefaction conditions must be specified before moving forward.


2004 ◽  
Vol 171 (4S) ◽  
pp. 410-410
Author(s):  
Christian Seitz ◽  
Bob Djavan ◽  
Michael Dobrovits ◽  
Matthias Waldert ◽  
Saeid Alavi ◽  
...  

2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


1983 ◽  
Vol 23 ◽  
Author(s):  
G.J. Galvin ◽  
L.S. Hung ◽  
J.W. Mayer ◽  
M. Nastasi

ABSTRACTEnergetic ion beams used outside the traditional role of ion implantation are considered for semiconductor applications involving interface modification for self-aligned silicide contacts, composition modification for formation of buried oxide layers in Si on insulator structures and reduced disorder in high energy ion beam annealing for buried collectors in transistor fabrication. In metals, aside from their use in modification of the composition of near surface regions, energetic ion beams are being investigated for structural modification in crystalline to amorphous transitions. Pulsed beams of photons and electrons are used as directed energy sources in rapid solidification. Here, we consider the role of temperature gradients and impurities in epitaxial growth of silicon.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 361
Author(s):  
Nicky M. M. D’Fonseca ◽  
Charlotte M. E. Gibson ◽  
Iris Hummel ◽  
David A. van Doorn ◽  
Ellen Roelfsema ◽  
...  

Obesity has been associated with altered reproductive activity in mares, and may negatively affect fertility. To examine the influence of long-term high-energy (HE) feeding on fertility, Shetland pony mares were fed a diet containing 200% of net energy (NE) requirements during a three-year study. The incidence of hemorrhagic anovulatory follicles (HAF) and annual duration of cyclicity were compared to those in control mares receiving a maintenance diet. Day-7 embryos were flushed and transferred between donor and recipient mares from both groups; the resulting conceptuses were collected 21 days after transfer to assess conceptus development. HE mares became obese, and embryos recovered from HE mares were more likely to succumb to early embryonic death. The period of annual cyclicity was extended in HE compared to control mares in all years. The incidence of HAFs did not consistently differ between HE and control mares. No differences in embryo morphometric parameters were apparent. In conclusion, consuming a HE diet extended the duration of cyclicity, and appeared to increase the likelihood of embryos undergoing early embryonic death following embryo transfer.


2021 ◽  
Vol 22 (8) ◽  
pp. 4250
Author(s):  
Kateřina Jáklová ◽  
Tereza Feglarová ◽  
Simona Rex ◽  
Zbyněk Heger ◽  
Tomáš Eckschlager ◽  
...  

A tyrosine kinase inhibitor, vandetanib (Van), is an anticancer drug affecting the signaling of VEGFR, EGFR and RET protooncogenes. Van is primarily used for the treatment of advanced or metastatic medullary thyroid cancer; however, its usage is significantly limited by side effects, particularly cardiotoxicity. One approach to minimize them is the encapsulation or binding of Van in- or onto a suitable carrier, allowing targeted delivery to tumor tissue. Herein, we constructed a nanocarrier based on apoferritin associated with Van (ApoVan). Based on the characteristics obtained by analyzing the average size, the surface ζ-potential and the polydispersive index, ApoVan nanoparticles exhibit long-term stability and maintain their morphology. Experiments have shown that ApoVan complex is relatively stable during storage. It was found that Van is gradually released from its ApoVan form into the neutral environment (pH 7.4) as well as into the acidic environment (pH 6.5). The effect of free Van and ApoVan on neuroblastoma and medullary thyroid carcinoma cell lines revealed that both forms were toxic in both used cell lines, and minimal differences between ApoVan and Van were observed. Thus, we assume that Van might not be encapsulated into the cavity of apoferritin, but instead only binds to its surface.


Sign in / Sign up

Export Citation Format

Share Document