scholarly journals Электрические характеристики термовольтаического элемента на основе сульфида самария

2020 ◽  
Vol 90 (10) ◽  
pp. 1739
Author(s):  
М.А. Гревцев ◽  
С.А. Казаков ◽  
М.М. Казанин ◽  
В.В. Каминский

The converter of thermal energy into electrical energy based on the thermovoltaic effect is considered. Samarium sulfide (SmS) samples obtained by high-temperature sintering were used as working material. The main electrical characteristics of the thermovoltaic element based on the thermovoltaic effect are determined: volt-ampere characteristic, maximum power, internal resistance. It is shown that the optimal load to obtain maximum power is equal to the internal resistance of the element.

2019 ◽  
Vol 124 ◽  
pp. 01031 ◽  
Author(s):  
A. R. Sadrtdinov ◽  
T. K. Galeev ◽  
I. Y. Mazarov ◽  
R. G. Safin ◽  
V. A. Saldaev ◽  
...  

The urgency of the use of low-grade organic fuels and wastes, in particular municipal solid (MSW), is due to recent developments in energy saving and energy efficiency. This directly relates to the direction of renewable energy, responsible for involving all wastes, such as MSW, in fuel energy balance to provide heat and electricity to decentralized power supply areas. This paper presents the process of high-temperature thermal decomposition of MSW in the steam-air medium of plasma under excessive pressure to generate electrical energy. The high enthalpy and great reactivity of the plasma gasifying agent makes it possible to carry out the process of thermal decomposition in the autothermal mode. The high-temperature mode and the use of plasma blast provides a high degree of conversion of waste into combustible components (CO, CH4, H2), the resulting gas mixture. The technological process significantly reduces the formation of potentially hazardous substances that affect the kinetics of the process. After generating electrical energy, the exhaust gases are subjected to complex purification from the products of combustion and cogeneration of residual thermal energy. In particular, purification from toxic nitrogen oxides (NOx) occurs, the formation of dioxins, furans and other dangerous derivatives of chloride compounds is prevented. Thermal energy, discharged at various sites of the plant, is almost completely used for the needs of the cogeneration plant and its units, which allows to achieve a total efficiency of at least 86%. The ability of the cogeneration plant to work on various types of solid waste gives a wide range of applications and operational capabilities.


2016 ◽  
Vol 3 (3) ◽  
Author(s):  
Michael Bittner ◽  
Benjamin Geppert ◽  
Nikola Kanas ◽  
Sathya Prakash Singh ◽  
Kjell Wiik ◽  
...  

AbstractA thermoelectric generator couples an entropy current with an electrical current in a way, that thermal energy is transformed to electrical energy. Hereby the thermoelectric energy conversion can be described in terms of fluxes of entropy and electric charge at locally different temperature and electric potential. Crucial for the function of a thermoelectric generator is the sign and strength of the coupling between the entropy current and the electrical current in the thermoelectric materials. For high-temperature application, tin-doped indium oxide (In


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Larysa Mykolaivna Batrak ◽  
Volodymyr Yakovych Romashko

Currently, various types of non-traditional and renewable sources of electrical energy are widely used. If the energy carrier of such sources is free, in the process of operation it is advisable to select the maximum possible power from them, regardless of the fact that the utilization factor of the source's electrical energy in this case may be relatively low. To obtain the maximum amount of electrical energy from the source, two conditions must be met: 1) the source must be brought to the maximum power point (МPP); 2) energy from the source must be taken continuously. As you know, to bring the source into the MPP, it is necessary that the load resistance be equal to the output resistance of the source. Otherwise, the power will be taken from the source, which is less than the maximum possible. Therefore, in cases where the load resistance differs from the output resistance of the source, a matching switching regulator is turned on between the source and the load to match the output resistance of the source with the load resistance. In this case, the input impedance of the switching regulator will be the load of the source. This resistance depends on the load resistance of the regulator, as well as on the relative time of the closed (open) state of the controlled switch S of the regulator t*. Thus, by adjusting the parameter t*, it is possible to ensure the fulfillment of the condition for removing the source into the MPP at various values of the load resistance. In this case, the maximum possible power of the source will be transferred to the load, regardless of the value of its resistance. The dependence of the output parameters of the switching regulator on the parameter t* describe its regulation characteristics. Since, when operating in the maximum power transmission mode, the internal resistance of the source and the load resistance are of the same order of magnitude, when determining the regulating characteristics of the regulator, the internal resistance of the source must be taken into account. The aim of the work is to analyze the control characteristics of the regulator, which operates in the mode of transferring maximum power from the source of electrical energy to the load, as well as to determine the conditions under which it is possible and advisable to operate in this mode. These issues were analyzed using the example of the two most common switching regulator circuits - step-down and step-up regulators. It is shown in the work that, in contrast to the up-type switching regulator, in the down-type regulator, the energy from the power source is taken in discrete portions. Therefore, it can ensure the selection of maximum power from the source only in the t* = 1 mode at a certain value of the load resistance. To ensure continuous extraction of energy from the source, at the input of the switching regulator of the step-down type, it is necessary to install a capacitance of sufficient value. In this case, the circuit can provide maximum power transfer from the source at different load resistances. The paper presents the adjusting characteristics of the analyzed circuits for the case of their operation in the mode of transferring maximum power from the power source to the load, which makes it possible to determine the parameter t* at which the power source is output to the MPP. It is shown that each of the considered circuits can provide the output of the power supply to the MPP only in a certain range of variation of the load resistance of the regulator. For each regulator, an appropriate range of variation of the t* parameter is indicated, depending on whether the power source is a voltage source or a current source.


2019 ◽  
Vol 1 (1) ◽  
pp. 15-21
Author(s):  
Amir Supriyanto

The electrical characteristics of cassava peel can be detected by using a pair of electrodes, Cu and Zn. Measurement of electrical characteristics is done when the cassava peel is given a 5 watt LED load and when the load is removed. Cassava peel are used in two different ways: fermented and non-fermented. The electrolyte cell used consisted of 20 cells, assembled in three different types: 20 series, 10 series with 2 parallel, and 5 series with 4 parallel. The volume of each cell's paste is 200 ml. The measurement results show that the 20 series circuit produces the greatest electrical voltage, but the electric current is small and the resistance is large. While the series with 20 cells and 5 series with 4 parallel obtained maximum power. The cassava peel which were fermented for 72 hours can increase the electrical power generated from the three types of circuits.


2021 ◽  
Vol 6 (1) ◽  
pp. 60-65
Author(s):  
Rifky Rifky ◽  
Agus Fikri ◽  
Mohammad Mujirudin

AbstrakSalah satu pemanfaatan energi surya adalah mengkonversi energi termalnya menjadi energi listrik. Konvertor yang digunakan adalah generator termoelektrik. Panas matahari diterima sisi panas termoelektrik melalui penyerap panas, sedangkan sisi dinginnya dilekatkan sistem pendingin aktif dengan fluida air. Penelitian ini memiliki tujuan untuk mendapatkan daya luaran semaksimal mungkin dari sistem generator termoelektrik yang mengkonversi energi termal surya menjadi energi listrik pada model bangunan. Metode penelitian yang digunakan adalah eksperimental, yang didahului dengan perancangan dan pembuatan alat penelitian. Alat penelitian berbentuk sistem generator yang diletakkan di atap model bangunan. Sistem generator terdiri dari penyerap panas aluminium, termoelektrik yang terdiri dari 15 set, dan sistem pendingin yang menggunakan fluida air bersirkulasi. Pengujian terhadap sistem dengan cara mengoperasikannya sambil melakukan pengamatan dan pengambilan data. Variabel dalam penelitian ini adalah susunan sambungan generator termoelektrik (seri dan paralel). Sementara data masukan adalah kelembaban udara, kecepatan angin, temperatur, dan aliran alir; sedangkan data luaran adalah tegangan listrik dan arus listrik. Hasil penelitian mendapatkan bahwa dengan perbedaan temperatur 12,8oC menghasilkan daya maksimum sebesar 2,214 watt dari susunan seri sambungan termolektrik. Sementara dengan perbedaan temperatur 15,4oC mendapatkan daya maksimum sebesar 0.101 watt dari susunan paralel sambungan termoelektrik.  Kata kunci: energi, surya, termoelektrik, atap, daya AbstractOne of the uses of solar energy is converting its thermal energy into electrical energy. The converter used is a thermoelectric generator. The sun's heat is received by the thermoelectric hot side through the heat sink, while the cold side is attached by an active cooling system with water fluid. This study aims to obtain the maximum possible output power from a thermoelectric generator system that converts solar thermal energy into electrical energy in the building model. The research method used is experimental, which is preceded by the design and manufacture of research tools. The research tool is in the form of a generator system that is placed on the roof of the building model. The generator system consists of an aluminum heat sink, a thermoelectric consisting of 15 sets, and a cooling system that uses circulating water fluid. Testing the system by operating it while observing and collecting data. The variable in this research is the connection arrangement of the thermoelectric generator (series and parallel). While the input data are humidity, wind speed, temperature, and flow flow; while the output data is electric voltage and electric current. The results showed that with a temperature difference of 12.8°C the maximum power was 2,214 watts from the series arrangement of the thermoelectric junction. Meanwhile, with a temperature difference of 15.4°C, the maximum power is 0.101 watts from the parallel arrangement of the thermoelectric connection. Keywords: energy, solar, thermoelectric, roof, power


Author(s):  
Chinchinada V. S. L. Kalyani ◽  
Motepalli Sunil Kumar ◽  
Tella Nagaraju

Thermoelectric generators (TEGs) are used in small power applications to generate electrical energy from waste heats. Maximum power is obtained when the connected load to the ends of TEGs matches their internal resistance. However, impedance matching cannot always be ensured. Therefore, TEGs operate at lower efficiency. For this reason, maximum power point tracking (MPPT) algorithms are utilized. In this study, both TEGs and a boost converter with MPPT were modeled together. Detailed modeling, simulation, and verification of TEGs depending on the Seebeck coefficient, the hot/cold side temperatures, and the number of modules in MATLAB/Simulink were carried out. In addition, a boost converter having a particle swarm optimization (PSO) MPPT algorithm was added to the TEG modeling. After the TEG output equations were determined, the TEG modeling was performed based on manufacturer data sheets. Thanks to the TEG model and the boost converter with PSO MPPT, the maximum power was tracked with a value of 98.64% and the power derived from the TEG was nearly unaffected by the load changes. The power outputs obtained from the system with and without MPPT were compared to emphasize the importance of MPPT. These simulation values were verified by using an experimental setup. Ultimately, the proposed modeling provides a system of TEGs and a boost converter having PSO MPPT.


Energy ◽  
2021 ◽  
pp. 121105
Author(s):  
Caleb Amy ◽  
Mehdi Pishahang ◽  
Colin Kelsall ◽  
Alina LaPotin ◽  
Asegun Henry

Sign in / Sign up

Export Citation Format

Share Document