scholarly journals Перспективы использования рентгеновских трубок с автоэмиссионным катодом и "прострельным" анодом в диапазоне мягкого рентгеновского излучения

2020 ◽  
Vol 90 (11) ◽  
pp. 1806
Author(s):  
М.М. Барышева ◽  
С.Ю. Зуев ◽  
А.Я. Лопатин ◽  
В.И. Лучин ◽  
А.Е. Пестов ◽  
...  

The use of field emission cathodes in the design of x-ray tubes requires the placement of a cathode assembly with a small distance from the anode, complicating the output of radiation. Most acute this problem occurs when generating a relatively soft spectrum with wavelengths of 1-10 nm: in this case, the accelerating voltage does not exceed several kilovolts, and the inter-electrode distance composes several hundred micrometers. In this work, we experimentally demonstrated the applicability of beryllium-based submicron films as “shot-through” anodes for generating the Be K line ( = 11.4 nm) and the associated bremsstrahlung spectrum. In particular, the characteristic radiation of a tube with a field emission blade cathode and a Be film anode was recorded within the scheme of a grazing incidence grating spectrometer. The characteristics of beryllium films necessary for the development of X-ray tubes of this type with a higher output power are determined.

2020 ◽  
Vol 15 (1) ◽  
pp. 1-6
Author(s):  
Michel Oliveira da Silva Dantas ◽  
Denise Criado ◽  
Alejandro Zuniga ◽  
Wellington Silva ◽  
Elisabete Galeazzo ◽  
...  

Nanostructured zinc oxide (ZnO) has attracted considerable interest for a wide range of applications, including its use as an active layer in gas sensor devices and as promising emitters for field emission devices. Although it is interesting for FE purposes, the synthesis of this material can be complex and non-compatible with microelectronic processes. To overcome this issue, this paper explores ZnO nanowires growth through thermal oxidation of zinc thin films. We applied this IC-compatible procedure to fabricate field emission cathodes. Analyses of Raman spectroscopy, X‑ray photoelectron spectrometry, X‑ray diffractometry and scanning electron microscopy confirmed that the processes applied were well succeeded in obtaining nanoscale structures of ZnO with dimensions up to 4 micrometers in length and 30‑100 nanometers in diameter. Electrical characterization showed an intense electron field emission on the active area of the device, with a low turn-on electric field (2.4 volts/micrometer). An innovative system based on image processing allowed electrical current mapping throughout the active area of the devices, providing information about the uniformity of the emitted current. These results demonstrate that the low-complex fabrication procedures adopted as well as the ZnO nanomaterial itself are suitable for FE devices development.


1997 ◽  
Vol 471 ◽  
Author(s):  
Alan F. Jankowski ◽  
Jeffrey P. Hayes

ABSTRACTDeposition into micron-sized holes is known to produce cone shapes as supported on substrates. Potential uses for the cones include field-forming devices as field ionizers and field emission cathodes. The application of such devices include flat panel displays and flash x-ray tubes. Process iterations to closely space arrays of sharp cones have been extensively documented during the past two decades using the physical vapor deposition method of evaporation. Sputter deposition is well known as a method to fill holes and trenches but has only recently been demonstrated as an alternative method to produce field emission cathodes. In a further reduction in size, we have been successful in demonstrating the ability to deposit a cone shape into a cavity with a 300nm diameter hole. Through comparison to the results of electron-beam evaporative deposition, a sputter deposited nanocone appears to be suitable for use as a field emission cathode.


Author(s):  
Xinghui Li ◽  
Deng Luo ◽  
Guodong Bai ◽  
Hanyan Li ◽  
Yinfu Hu ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 260 ◽  
Author(s):  
Karolina Urszula Laszczyk

In the first decade of our century, carbon nanotubes (CNTs) became a wonderful emitting material for field-emission (FE) of electrons. The carbon nanotube field-emission (CNT-FE) cathodes showed the possibility of low threshold voltage, therefore low power operation, together with a long lifetime, high brightness, and coherent beams of electrons. Thanks to this, CNT-FE cathodes have come ahead of increasing demand for novel self-sustaining and miniaturized devices performing as X-ray tubes, X-ray spectrometers, and electron microscopes, which possess low weight and might work without the need of the specialized equipped room, e.g., in a harsh environment and inaccessible-so-far areas. In this review, the author discusses the current state of CNT-FE cathode research using CNT suspensions. Included in this review are the basics of cathode operation, an evaluation, and fabrication techniques. The cathodes are compared based on performance and correlated issues. The author includes the advancement in field-emission enhancement by postprocess treatments, incorporation of fillers, and the use of film coatings with lower work functions than that of CNTs. Each approach is discussed in the context of the CNT-FE cathode operating factors. Finally, we discuss the issues and perspectives of the CNT-FE cathode research and development.


Author(s):  
Werner P. Rehbach ◽  
Peter Karduck

In the EPMA of soft x rays anomalies in the background are found for several elements. In the literature extremely high backgrounds in the region of the OKα line are reported for C, Al, Si, Mo, and Zr. We found the same effect also for Boron (Fig. 1). For small glancing angles θ, the background measured using a LdSte crystal is significantly higher for B compared with BN and C, although the latter are of higher atomic number. It would be expected, that , characteristic radiation missing, the background IB (bremsstrahlung) is proportional Zn by variation of the atomic number of the target material. According to Kramers n has the value of unity, whereas Rao-Sahib and Wittry proposed values between 1.12 and 1.38 , depending on Z, E and Eo. In all cases IB should increase with increasing atomic number Z. The measured values are in discrepancy with the expected ones.


Author(s):  
Y. Sato ◽  
T. Hashimoto ◽  
M. Ichihashi ◽  
Y. Ueki ◽  
K. Hirose ◽  
...  

Analytical TEMs have two variations in x-ray detector geometry, high and low angle take off. The high take off angle is advantageous for accuracy of quantitative analysis, because the x rays are less absorbed when they go through the sample. The low take off angle geometry enables better sensitivity because of larger detector solid angle.Hitachi HF-2000 cold field emission TEM has two versions; high angle take off and low angle take off. The former allows an energy dispersive x-ray detector above the objective lens. The latter allows the detector beside the objective lens. The x-ray take off angle is 68° for the high take off angle with the specimen held at right angles to the beam, and 22° for the low angle take off. The solid angle is 0.037 sr for the high angle take off, and 0.12 sr for the low angle take off, using a 30 mm2 detector.


2000 ◽  
Vol 628 ◽  
Author(s):  
Sophie Besson ◽  
Catherine Jacquiod ◽  
Thierry Gacoin ◽  
André Naudon ◽  
Christian Ricolleau ◽  
...  

ABSTRACTA microstructural study on surfactant templated silica films is performed by coupling traditional X-Ray Diffraction (XRD) and Transmission Electronic Microscopy (TEM) to Grazing Incidence Small Angle X-Ray Scattering (GISAXS). By this method it is shown that spin-coating of silicate solutions with cationic surfactant cetyltrimethylammonium bromide (CTAB) as a templating agent provides 3D hexagonal structure (space group P63/mmc) that is no longer compatible with the often described hexagonal arrangement of tubular micelles but rather with an hexagonal arrangement of spherical micelles. The extent of the hexagonal ordering and the texture can be optimized in films by varying the composition of the solution.


Author(s):  
N.M. Novikovskii ◽  
◽  
V.M. Raznomazov ◽  
V.O. Ponomarenko ◽  
D.A. Sarychev ◽  
...  

Author(s):  
Jonathan Ogle ◽  
Daniel Powell ◽  
Eric Amerling ◽  
Detlef Matthias Smilgies ◽  
Luisa Whittaker-Brooks

<p>Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.<b></b></p>


Sign in / Sign up

Export Citation Format

Share Document