scholarly journals Зависимость механических и трибологических свойств a-C : H : SiO-=SUB=-x-=/SUB=--пленок от амплитуды напряжения смещения подложки

2021 ◽  
Vol 91 (8) ◽  
pp. 1286
Author(s):  
А.С. Гренадеров ◽  
А.А. Соловьёв ◽  
К.В. Оскомов ◽  
М.О. Жульков

The paper presents the AISI 316L stainless steel surface modification by plasma-assisted chemical vapor deposition of a-C:H:SiOx film using the pulsed bipolar substrate bias voltage. The mechanical and tribological properties of the a-C:H:SiOx film and the steel surface are examined using the nanoindentation method and the pin-on-disk tribometer, respectively. The optimum value is obtained for the amplitude of the negative pulse of the bipolar bias voltage, when the hardness of the a-C:H:SiOx film is high (19±2 GPa). This hardness value is 3.5 times greater, than the hardness of the AISI 316L steel surface (5.5±0.1 GPa). At the same time, the coefficient of friction of the film is low (0.08), which is 9 times lower than that of the steel (0.72). The wear rate values are found to be 8.5×10-7 and 3.7×10-5 mm3N-1m-1 for the coated and uncoated steel, respectively. The structure and composition of the obtained films are studied by Raman spectroscopy and scanning electron microscopy.

2021 ◽  
pp. 53-57
Author(s):  
Alexander Grenadyorov ◽  
Andrey Solovyev ◽  
Konstantin Oskomov ◽  
Evgeniy Yakovlev

The paper presents the research results of corrosion and mechanical properties of the AISI 316L stainless steel after the surface treatment. This treatment includes the formation of the titanium-based surface alloy provided by the low-energy high-current electron beam. The obtained surface alloy used as an underlayer, is then coated with the a-C:H:SiOx film using the PACVD method. It is shown that such a combined treatment of the steel surface improves its corrosion resistance, i. e., reduces the current density from 110-7 to 910-10 A/cm2 and corrosion rate from 1.110-3 to 9.310-6 mm/year. The resulted modified steel surface possesses high mechanical and tribological properties


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1336
Author(s):  
Jorge Caessa ◽  
Todor Vuchkov ◽  
Talha Bin Yaqub ◽  
Albano Cavaleiro

Friction and wear contribute to high energetic losses that reduce the efficiency of mechanical systems. However, carbon alloyed transition metal dichalcogenide (TMD-C) coatings possess low friction coefficients in diverse environments and can self-adapt to various sliding conditions. Hence, in this investigation, a semi-industrial magnetron sputtering device, operated in direct current mode (DC), is utilized to deposit several molybdenum-selenium-carbon (Mo-Se-C) coatings with a carbon content up to 60 atomic % (at. %). Then, the carbon content influence on the final properties of the films is analysed using several structural, mechanical and tribological characterization techniques. With an increasing carbon content in the Mo-Se-C films, lower Se/Mo ratio, porosity and roughness appeared, while the hardness and compactness increased. Pin-on-disk (POD) experiments performed in humid air disclosed that the Mo-Se-C vs. nitrile butadiene rubber (NBR) friction is higher than Mo-Se-C vs. steel friction, and the coefficient of friction (CoF) is higher at 25 °C than at 200 °C, for both steel and NBR countersurfaces. In terms of wear, the Mo-Se-C coatings with 51 at. % C showed the lowest specific wear rates of all carbon content films when sliding against steel. The study shows the potential of TMD-based coatings for friction and wear reduction sliding against rubber.


2015 ◽  
Vol 128 (5) ◽  
pp. 923-926
Author(s):  
B. Sartowska ◽  
M. Barlak ◽  
L. Waliś ◽  
W. Starosta ◽  
J. Senatorski ◽  
...  

2019 ◽  
Vol 28 ◽  
pp. 096369351987573 ◽  
Author(s):  
Zhiwei Wu ◽  
Sihao Li ◽  
Zhaojun Xu ◽  
Qianzhi Wang ◽  
Fei Zhou

Boron carbonitride (BCN) coatings were prepared using radio frequency (RF) magnetron sputtering via adjusting substrate bias voltage from −50 V to −200 V. The mechanical and tribological properties of the coatings were investigated. The coexistence of B–N, B–C, and N–C bonds was detected in coatings according to X-ray photoelectron spectroscopy analysis, indicating the formation of ternary BCN hybridization. The hardness of BCN coatings increased from 14.4 GPa to 24.3 GPa with an increase of substrate bias voltage, while their adhesion strength on substrate decreased. The friction behavior of BCN coatings sliding against different wood (acerbic, beech, and lauan) balls was examined using a ball-on-disk tribometer. The average friction coefficient fluctuated in a range of 0.74–1.02. The wear track of BCN coating sliding against hardwood (acerbic) presented obvious scratches, which were not noted as sliding against other softwood balls in comparison.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4925
Author(s):  
Ngoc-Tu Do ◽  
Van-Hai Dinh ◽  
Le Van Lich ◽  
Hong-Hue Dang-Thi ◽  
Trong-Giang Nguyen

With the recent significant advances in micro- and nanoscale fabrication techniques, deposition of diamond-like carbon films on stainless steel substrates has been experimentally achieved. However, the underlying mechanism for the formation of film microstructures has remained elusive. In this study, the growth processes of diamond-like carbon films on AISI 316L substrate are studied via the molecular dynamics method. Effects of substrate bias voltage on the structure properties and sp3 hybridization ratio are investigated. A diamond-like carbon film with a compact structure and smooth surface is obtained at 120 V bias voltage. Looser structures with high surface roughness are observed in films deposited under bias voltages of 0 V or 300 V. In addition, sp3 fraction increases with increasing substrate bias voltage from 0 V to 120 V, while an opposite trend is obtained when the bias voltage is further increased from 120 V to 300 V. The highest magnitude of sp3 fraction was about 48.5% at 120 V bias voltage. The dependence of sp3 fraction in carbon films on the substrate bias voltage achieves a high consistency within the experiment results. The mechanism for the dependence of diamond-like carbon structures on the substrate bias voltage is discussed as well.


2012 ◽  
Vol 182-183 ◽  
pp. 232-236 ◽  
Author(s):  
Jin Feng Cui ◽  
Li Qiang ◽  
Bin Zhang ◽  
Xiao Ling ◽  
Jun Yan Zhang

Ti containing hydrogenated diamond like carbon films (Ti-DLC) was deposited on Si substrates at room temperature by magnetron sputtering Ti-twin target in methane and argon mixture atmosphere via changing the substrate bias voltage. The Ti atomic concentration in the film is less than 0.57% and exists mainly in the form of metallic titanium rather than TiC, confirmed by XPS analysis. The internal compressive stress of the film decreases monotonically with the substrate bias voltage increase. However, the hardness values of the film keep at level (12 GPa) without almost any obvious change with the increase of the substrate bias voltage. Furthermore, Ti-containing DLC film prepared at -1600 V substrate bias voltage shows an extremely low wear rate (~10-9mm3/Nm) and low friction coefficient (0.09).


Sign in / Sign up

Export Citation Format

Share Document