scholarly journals Полноволновое двумерное моделирование распространения и поглощения геликонов в плазме сферического токамака Глобус-М2

2022 ◽  
Vol 92 (3) ◽  
pp. 353
Author(s):  
М.А. Ирзак ◽  
С.А. Нечаев

Numerical modeling of propagation and absorption of fast waves (helicons) with frequency 200 MHz in 2D inhomogeneous plasma of the spherical tokamak Globus-M2 was carried out with 2D full-wave code. Toroidal effects, poloidal magnetic field and the actual shape of the flux surfaces were taken into account. The full wave electric field and RF power absorption profiles were computed by solving plasma wave equation with electron Landau damping term. The modeling demonstrated a fairly high efficiency of helicons absorption in the bulk plasma within a wide range of experimental parameters. The waves propagate to the inner regions of the plasma column and are mainly absorbed there; less than 20% of RF energy returns back to the plasma periphery.

2019 ◽  
Author(s):  
Michael Oschmann ◽  
Linus Johansson Holm ◽  
Oscar Verho

Benzofurans are everywhere in nature and they have been extensively studied by medicinal chemists over the years because of their chemotherapeutic and physiological properties. Herein, we describe a strategy that can be used to access elaborate benzo-2-carboxamide derivatives, which involves a synthetic sequence of 8-aminoquinoline directed C–H arylations followed by transamidations. For the directed C–H arylations, Pd catalysis was used to install a wide range of aryl and heteroaryl substituents at the C3 position of the benzofuran scaffold in high efficiency. Directing group cleavage and further diversification of the C3-arylated benzofuran products were then achieved in a single synthetic operation through the utilization of a two-step transamidation protocol. By bocylating the 8-aminoquinoline amide moiety of these products, it proved possible to activate them towards aminolysis with different amine nucleophiles. Interestingly, this aminolysis reaction was found to proceed efficiently without the need of any additional catalyst or additive. Given the high efficiency and modularity of this synthetic strategy, it constitute a very attractive approach for generating structurally-diverse collections of benzofuran derivatives for small molecule screening.


Author(s):  
S.V. Borshch ◽  
◽  
R.M. Vil’fand ◽  
D.B. Kiktev ◽  
V.M. Khan ◽  
...  

The paper presents the summary and results of long-term and multi-faceted experience of international scientific and technical cooperation of Hydrometeorological Center of Russia in the field of hydrometeorology and environmental monitoring within the framework of WMO programs, which indicates its high efficiency in performing a wide range of works at a high scientific and technical level. Keywords: World Meteorological Organization, major WMO programs, representatives of Hydrometeorological Center of Russia in WMO


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1236
Author(s):  
Alessandro Cidronali ◽  
Edoardo Ciervo ◽  
Giovanni Collodi ◽  
Stefano Maddio ◽  
Marco Passafiume ◽  
...  

The present paper analyzes the performance of localization systems, based on dual-band Direction of Arrival (DoA) approach, in multi-path affected scenarios. The implemented DoA estimation, which belongs to the so-called Space and Frequency Division Multiple Access (SFDMA) technique, takes advantage of the use of two uncorrelated communication carrier frequencies, as already demonstrated by the authors. Starting from these results, this paper provides, first, the methodology followed to describe the localization system in the proposed simulation environment, and, as a second step, describes how multi-path effects may be taken into account through a set of full-wave simulations. The latter follows an approach based on the two-ray model. The validation of the proposed approach is demonstrated by simulations over a wide range of virtual scenarios. The analysis of the results highlights the ability of the proposed approach to describe multi-path effects and confirms enhancements in DoA estimation as experimentally evaluated by the same authors. To further assess the performance of the aforementioned simulation environment, a comparison between simulated and measured results was carried out, confirming the capability to predict DoA performance.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1034
Author(s):  
Ching-Chien Huang ◽  
Chin-Chieh Mo ◽  
Guan-Ming Chen ◽  
Hsiao-Hsuan Hsu ◽  
Guo-Jiun Shu

In this work, an experiment was carried out to investigate the preparation condition of anisotropic, Fe-deficient, M-type Sr ferrite with optimum magnetic and physical properties by changing experimental parameters, such as the La substitution amount and little additive modification during fine milling process. The compositions of the calcined ferrites were chosen according to the stoichiometry LaxSr1-xFe12-2xO19, where M-type single-phase calcined powder was synthesized with a composition of x = 0.30. The effect of CaCO3, SiO2, and Co3O4 inter-additives on the Sr ferrite was also discussed in order to obtain low-temperature sintered magnets. The magnetic properties of Br = 4608 Gauss, bHc = 3650 Oe, iHc = 3765 Oe, and (BH)max = 5.23 MGOe were obtained for Sr ferrite hard magnets with low cobalt content at 1.7 wt%, which will eventually be used as high-end permanent magnets for the high-efficiency motor application in automobiles with Br > 4600 ± 50 G and iHc > 3600 ± 50 Oe.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Jongwon Lee ◽  
Kilsun Roh ◽  
Sung-Kyu Lim ◽  
Youngsu Kim

This is the first demonstration of sidewall slope control of InP via holes with an etch depth of more than 10 μm for 3D integration. The process for the InP via holes utilizes a common SiO2 layer as an InP etch mask and conventional inductively coupled plasma (ICP) etcher operated at room temperature and simple gas mixtures of Cl2/Ar for InP dry etch. Sidewall slope of InP via holes is controlled within the range of 80 to 90 degrees by changing the ICP power in the ICP etcher and adopting a dry-etched SiO2 layer with a sidewall slope of 70 degrees. Furthermore, the sidewall slope control of the InP via holes in a wide range of 36 to 69 degrees is possible by changing the RF power in the etcher and introducing a wet-etched SiO2 layer with a small sidewall slope of 2 degrees; this wide slope control is due to the change of InP-to-SiO2 selectivity with RF power.


Author(s):  
Michele Righi ◽  
Giacomo Moretti ◽  
David Forehand ◽  
Lorenzo Agostini ◽  
Rocco Vertechy ◽  
...  

AbstractDielectric elastomer generators (DEGs) are a promising option for the implementation of affordable and reliable sea wave energy converters (WECs), as they show considerable promise in replacing expensive and inefficient power take-off systems with cheap direct-drive generators. This paper introduces a concept of a pressure differential wave energy converter, equipped with a DEG power take-off operating in direct contact with sea water. The device consists of a closed submerged air chamber, with a fluid-directing duct and a deformable DEG power take-off mounted on its top surface. The DEG is cyclically deformed by wave-induced pressure, thus acting both as the power take-off and as a deformable interface with the waves. This layout allows the partial balancing of the stiffness due to the DEG’s elasticity with the negative hydrostatic stiffness contribution associated with the displacement of the water column on top of the DEG. This feature makes it possible to design devices in which the DEG exhibits large deformations over a wide range of excitation frequencies, potentially achieving large power capture in a wide range of sea states. We propose a modelling approach for the system that relies on potential-flow theory and electroelasticity theory. This model makes it possible to predict the system dynamic response in different operational conditions and it is computationally efficient to perform iterative and repeated simulations, which are required at the design stage of a new WEC. We performed tests on a small-scale prototype in a wave tank with the aim of investigating the fluid–structure interaction between the DEG membrane and the waves in dynamical conditions and validating the numerical model. The experimental results proved that the device exhibits large deformations of the DEG power take-off over a broad range of monochromatic and panchromatic sea states. The proposed model demonstrates good agreement with the experimental data, hence proving its suitability and effectiveness as a design and prediction tool.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 823
Author(s):  
Alexander M. Grishin

We report optical and mechanical properties of hard aluminum magnesium boride films magnetron sputtered from a stoichiometric AlMgB14 ceramic target onto Corning® 1737 Glass and Si (100) wafers. High target sputtering rf-power and sufficiently short target-to-substrate distance appeared to be critical processing conditions. Amorphous AlMgB14 films demonstrate very strong indentation size effect (ISE): exceptionally high nanohardness H = 88 GPa and elastic Young’s modulus E* = 517 GPa at 26 nm of the diamond probe penetration depth and almost constant values, respectively, of about 35 GPa and 275 GPa starting at depths of about 2–3% of films’ thickness. For comparative analysis of elastic strain to failure index  H/E*, resistance to plastic deformation ratio H3/E*2 and elastic recovery ratio We were obtained in nanoindentation tests performed in a wide range of loading forces from 0.5 to 40 mN. High authentic numerical values of H = 50 GPa and E* = 340 GPa correlate with as low as only 10% of total energy dissipating through the plastic deformations.


Sign in / Sign up

Export Citation Format

Share Document