scholarly journals Remoción de cipermetrina presente en el baño de ganado utilizando humedales construidos

2016 ◽  
Vol 17 (2) ◽  
pp. 203 ◽  
Author(s):  
José Luis Marrugo Negrete ◽  
José Gregorio Ortega-Ruíz ◽  
Amado Enrique Navarro Frómeta ◽  
Germán Holland Enamorado Montes ◽  
Iván David Urango Cárdenas ◽  
...  

<p>Ectoparasite control in the livestock sector involves the use of chemicals to prevent production losses. In small farms that produce milk in the Córdoba department, the use of the pumping system for the cattle bath is common between farmers. In this work, cypermethrin degradation efficiency was evaluated in three lab-scale subsurface flow constructed wetland planted with Limnocharis flava, Cyperus papyrus and Alpinia purpurata sp., and one unplanted system, all of the beds were gravel based; then, total suspended solids and total phosphorus retention, and elimination of chemical oxygen demand were measured as water quality parameters. The wastewater was pretreated in a descending-ascending slow sand filter, and then was conducted to a wetland continuous flow fed at 7 ml/min. Limnocharis flava bed was higher for the degradation of organic compounds, with 97.9 ± 2.5 % and 69.1 ± 3.7 % for cypermethrin and chemical oxygen demand respectively, with statistically significant differences (p &lt; 0,05) respect to unplanted bed. The higher SST removal were found in the Cyperus papyrus wetland, with 62,0 %, however, no differences were observed with the other evaluated planted systems, as opposed these were significantly higher than unplanted wetlands.</p>

2020 ◽  
Vol 9 (6) ◽  
pp. e183963748
Author(s):  
Rafael Souza Leopoldino Nascimento ◽  
Ludymyla Marcelle Lima Silva ◽  
Lucas Periard ◽  
Anibal da Fonseca Santiago

The technology of microalgae photobioreactors and illuminated by LEDs has been widely studied for the treatment of wastewater. However, sunlight is a free resource and should be taken advantage of. But the question remains whether photobioreactors illuminated by natural (sunlight) light in combination with artificial light can have greater operational stability or greater performance when compared to systems illuminated only by artificial light. In this context, continuous flow photobioreactors illuminated by Light Emitting Diodes (LEDs) combined, or not, with sunlight were operated and had their performance evaluated. The variables analyzed were pH, OD, chemical oxygen demand (COD), chlorophyll - a and total suspended solids. The photobioreactors were effective for removing organic matter, with 75 ± 15% in the photobioreactor illuminated by LED and 65 ± 10% in the photobioreactor illuminated by sunlight and LED. The results showed that the use of combined lighting favors the production of dissolved oxygen and ensures greater operational stability in the removal of carbonaceous organic matter.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3784 ◽  
Author(s):  
Violetta Kozik ◽  
Krzysztof Barbusinski ◽  
Maciej Thomas ◽  
Agnieszka Sroda ◽  
Josef Jampilek ◽  
...  

The potential implementation of Envifer®, a commercial product containing potassium ferrate (40.1% K2FeO4), for the purification of highly contaminated tannery wastewater from leather dyeing processes was proposed. The employment of the Taguchi method for optimization of experiments allowed the discoloration (98.4%), chemical oxygen demand (77.2%), total organic carbon (75.7%), and suspended solids (96.9%) values to be lowered using 1.200 g/L K2FeO4 at pH 3 within 9 min. The application of the central composite design (CCD) and the response surface methodology (RSM) with the use of 1.400 g/L K2FeO4 at pH 4.5 diminished the discoloration, the chemical oxygen demand, the total organic carbon, and suspended solids within 9 min. The Taguchi method is suitable for the initial implementation, while the RSM is superior for the extended optimization of wastewater treatment processes.


2013 ◽  
Vol 68 (2) ◽  
pp. 462-471 ◽  
Author(s):  
Mathieu Lepot ◽  
Jean-Baptiste Aubin ◽  
Jean-Luc Bertrand-Krajewski

Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.


2019 ◽  
Author(s):  
Luz Breton-Deval ◽  
Katy Juárez ◽  
Alejandro Sánchez-Flores ◽  
Rosario Vera-Estrella

ABSTRACTThe aim of this study is to analyze the water quality parameters and bacterial diversity and thereby understand the effect of water quality on the microbial population structure in the river. The following parameters: total coliforms, chemical oxygen demand, harness, ammonium, nitrite, nitrate, total Kjeldahl nitrogen, dissolved oxygen, total phosphorus, total dissolved solids, and temperature were analyzing along 17 sampling points in the river. The worst levels of pollution were 510 mg/L chemical oxygen demand, 7 mg/L nitrite, 45 mg/L nitrate, 2 mg/L dissolved oxygen, and 756 mg/L of total dissolved solids. Whole metagenome shotgun sequencing was performed at 4 key points along the river (P1,P7,P10 and P17), the first point had clean water and the other points were polluted, as a result of this pollution, the structure of microbial communities along the river have changed. Proteobacteria and Bacteroidetes were the most representative phyla with a relative abundance of 57 and 43% respectively for P1, 82 and 15% for P7, 69 and 27% for P10 and 87 and 10% for the last point P17. P1 is rich in microorganism such as Limnohabitans a planktonic bacterium very common in freshwater ecosystems. However, in P7, P10 and P17 are rich in opportunistic pathogens such as Acinetobacter Arcobacter and Myroides that endangers the health of around 1.6 million people which live around the area. These results elucidate the influence of the pollution on the microbial community and the likely effects on the health of the people around.


Author(s):  
Bisekwa E ◽  
Njogu PM ◽  
Kufa-Obso T

Arabica coffee is cultivated by smallholders for commercial purposes, and it is commonly processed using wet Coffee Processing Technology. Burundi has more than 250 Coffee Processing factories which discharge their effluents to water bodies. The goal of this study was to determine the levels of physicochemical parameters in wastewater from Coffee Processing Technology factories in major coffee growing ecological zones in Burundi. Wastewater samples were collected from 19 sites representing private, public and cooperative owned coffee processing stations. Physicochemical analyses were determined in-situ field and laboratory conditions using standard procedures. Results indicate that the wastewater does not meet Burundi Effluent Discharge standards for Total Suspended solids, Chemical Oxygen Demand, Biochemical Oxygen Demand, pH. The data revealed that the wet coffee processing pollutes the environment in terms of pH, Total Suspended solids, Chemical Oxygen Demand, Biochemical Oxygen Demand. There is need to install quality polishing technologies to treat the water before disposal.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2618
Author(s):  
Johann Alexander Vera Mercado ◽  
Bernard Engel

Land use influences water quality in streams at different spatial scales and varies in time and space. Water quality has long been associated with agricultural and urban land uses in catchments. The effects of developed, forest, pasture, and agricultural land use on nitrogen, nitrate, and nitrite (NNN); total phosphorus (TP); total suspended solids (TSS); chemical oxygen demand (COD); dissolved oxygen (DO) and total Kjeldahl nitrogen (TKN) concentrations and their sensitivity were quantified to spatial pattern differences. The linear mixed modeling framework was used to examine the importance of spatial extent on models with water quality parameters as the response variable and land use types as the predictor variable. The results indicated that land use categories on different water quality parameters were significant and dependent on the selected spatial scales. Land use exhibited a strong association with total phosphorus and total suspended solids for close reach distances. Phosphorus is not highly soluble, and it binds strongly to fine soil particles, which are transported by water via runoff. Nitrogen, nitrate, and nitrite, dissolved oxygen, chemical oxygen demand, and total Kjeldahl nitrogen concentrations were better predicted for further reach distances, such as 45 or 50 km, where the best model of nitrogen, nitrate, and nitrite is consistent with the high mobility of NO3−.


2018 ◽  
Vol 2 ◽  
pp. 50 ◽  
Author(s):  
Brian T. Hawkins ◽  
Tate W. Rogers ◽  
Christopher J. Davey ◽  
Mikayla H. Stoner ◽  
Ewan J. McAdam ◽  
...  

Onsite reuse of blackwater requires removal of considerable amounts of suspended solids and organic material in addition to inactivation of pathogens. Previously, we showed that electrochemical treatment could be used for effective pathogen inactivation in blackwater, but was inadequate to remove solids and organics to emerging industry standards. Further, we found that as solids and organics accumulate with repeated recycling, electrochemical treatment becomes less energetically sustainable. Here, we describe a pilot study in which concentrated blackwater is pretreated with ultrafiltration and granular activated carbon prior to electrochemical disinfection, and show that this combination of treatments removes 75-99% of chemical oxygen demand, 92-100% of total suspended solids, and improves the energy efficiency of electrochemical blackwater treatment by an order of magnitude.


Author(s):  
Zahidah Hasan ◽  
Thoriq Ilham ◽  
Yuli Andriani ◽  
Heti Herawati ◽  
Fachmijany Sulawesty

The purpose of this study was to determine water quality distribution in Situ Gunung Putri. This research was conducted from February to March 2019, carried out in Situ Gunung Putri and at the Limnology Research Center of the Indonesian Institute of Sciences, both located in Bogor, West Java. The method used was the survey method. The results showed that, at the surface level, the temperature ranged between (28.14±0.52 and 30.61±1.76)°C, transparency between (0.38±0.12 and 0.65±0.06) m, dissolved oxygen (DO) was between 1.92±1.10 and 5.7± 2.55 mg / L, chemical oxygen demand (COD) was between 42.22±9.86 and 54.09±15.89, nitrate between (0.047±0.009 and 0.05±0.015) mg / L, phosphate of (0.015±0.002 and 0.022± 0.004) mg / L and pH was between 7.11± 0.27 and 7.33 ±0.34. Meanwhile at the Secchi depth values of the temperature ranged between (2.93±0.71 and 29.96 ±1.71)°C, DO was 1.14 ±0.90 and 3.37±1.63  mg / L, nitrate was 0.045±0.008 and 0.056±0.019 mg / L, phosphate was 0.016±0.003 and 0.035± 0.043 mg / L and pH was between 6.68± 0.33 and 7.11 ±0.28.  Based on these values water quality parameters except COD in  Situ Gunung Putri is still at the optimal range  for aquatic organisms.


Sign in / Sign up

Export Citation Format

Share Document