Design and Analysis of Optimal Pre-Control of Brucellosis Model by Dynamic Threshold-Based Microcomputer Model (Preprint)

2020 ◽  
Author(s):  
Yihao Huang ◽  
Mingtao Li

BACKGROUND Mathematical models have become a very important tool for the study of infectious diseases. Mathematical models can reflect the spread of infectious diseases, and can also be used to study the effect of different inhibition methods on the suppression of infectious diseases. The effect of control measures to obtain effective suppression programs can provide theoretical support for the suppression of infectious diseases. Therefore, it is the major objective of this study to build a suitable mathematical model for Brucellosis infection. OBJECTIVE To study the optimized pre-control method of Brucellosis model by the dynamic threshold-based microcomputer model, and to provide critical theoretical support for the prevention and control of Brucellosis. METHODS By studying the transmission characteristics of Brucella and building a Brucella transmission model, a pre-control method for key populations (Brucella susceptible populations) is designed according to these characteristics, thereby exploring the utilization of protective tools by key groups before and after pre-control. RESULTS The improvement in “whether wearing gloves” is the most obvious, which increases from 51.01% before the pre-control to 66.22% after the pre-control, with an increase of 15.21%. The difference is statistically significant (P<0.001). However, for “whether wearing hats”, the conditions of key populations are not improved significantly, which increases from 57.3% before the pre-control to 58.6% after the pre-control, with an increase of 1.3%. The difference is not statistically significant (P>0.05). CONCLUSIONS The research results of Brucellosis have provided theoretical support for the suppression of Brucella and the protective measures for key populations.

2020 ◽  
Author(s):  
Yihao Huang ◽  
Mingtao Li

BACKGROUND Brucella is a gram-negative, nonmotile bacterium without a capsule. The infection scope of Brucella is wide. The major source of infection is mammals such as cattle, sheep, goats, pigs, and dogs. Currently, human beings do not transmit Brucella to each other. When humans eat Brucella-contaminated food or contact animals or animal secretions and excretions infected with Brucella, they may develop brucellosis. Although brucellosis does not originate in humans, its diagnosis and cure are very difficult; thus, it has a huge impact on humans. Even with the rapid development of medical science, brucellosis is still a major problem for Chinese people. Currently, the number of patients with brucellosis in China is 100,000 per year. In addition, due to the ongoing improvement in the living standards of Chinese people, the demand for meat products has gradually increased, and increased meat transactions have greatly promoted the spread of brucellosis. Therefore, many researchers are concerned with investigating the transmission of Brucella as well as the diagnosis and treatment of brucellosis. Mathematical models have become an important tool for the study of infectious diseases. Mathematical models can reflect the spread of infectious diseases and be used to study the effect of different inhibition methods on infectious diseases. The effect of control measures to obtain effective suppression can provide theoretical support for the suppression of infectious diseases. Therefore, it is the objective of this study to build a suitable mathematical model for brucellosis infection. OBJECTIVE We aimed to study the optimized precontrol methods of brucellosis using a dynamic threshold–based microcomputer model and to provide critical theoretical support for the prevention and control of brucellosis. METHODS By studying the transmission characteristics of Brucella and building a Brucella transmission model, the precontrol methods were designed and presented to the key populations (Brucella-susceptible populations). We investigated the utilization of protective tools by the key populations before and after precontrol methods. RESULTS An improvement in the amount of glove-wearing was evident and significant (<i>P</i>&lt;.001), increasing from 51.01% before the precontrol methods to 66.22% after the precontrol methods, an increase of 15.21%. However, the amount of hat-wearing did not improve significantly (<i>P</i>=.95). Hat-wearing among the key populations increased from 57.3% before the precontrol methods to 58.6% after the precontrol methods, an increase of 1.3%. CONCLUSIONS By demonstrating the optimized precontrol methods for a brucellosis model built on a dynamic threshold–based microcomputer model, this study provides theoretical support for the suppression of Brucella and the improved usage of protective measures by key populations.


10.2196/18664 ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. e18664
Author(s):  
Yihao Huang ◽  
Mingtao Li

Background Brucella is a gram-negative, nonmotile bacterium without a capsule. The infection scope of Brucella is wide. The major source of infection is mammals such as cattle, sheep, goats, pigs, and dogs. Currently, human beings do not transmit Brucella to each other. When humans eat Brucella-contaminated food or contact animals or animal secretions and excretions infected with Brucella, they may develop brucellosis. Although brucellosis does not originate in humans, its diagnosis and cure are very difficult; thus, it has a huge impact on humans. Even with the rapid development of medical science, brucellosis is still a major problem for Chinese people. Currently, the number of patients with brucellosis in China is 100,000 per year. In addition, due to the ongoing improvement in the living standards of Chinese people, the demand for meat products has gradually increased, and increased meat transactions have greatly promoted the spread of brucellosis. Therefore, many researchers are concerned with investigating the transmission of Brucella as well as the diagnosis and treatment of brucellosis. Mathematical models have become an important tool for the study of infectious diseases. Mathematical models can reflect the spread of infectious diseases and be used to study the effect of different inhibition methods on infectious diseases. The effect of control measures to obtain effective suppression can provide theoretical support for the suppression of infectious diseases. Therefore, it is the objective of this study to build a suitable mathematical model for brucellosis infection. Objective We aimed to study the optimized precontrol methods of brucellosis using a dynamic threshold–based microcomputer model and to provide critical theoretical support for the prevention and control of brucellosis. Methods By studying the transmission characteristics of Brucella and building a Brucella transmission model, the precontrol methods were designed and presented to the key populations (Brucella-susceptible populations). We investigated the utilization of protective tools by the key populations before and after precontrol methods. Results An improvement in the amount of glove-wearing was evident and significant (P<.001), increasing from 51.01% before the precontrol methods to 66.22% after the precontrol methods, an increase of 15.21%. However, the amount of hat-wearing did not improve significantly (P=.95). Hat-wearing among the key populations increased from 57.3% before the precontrol methods to 58.6% after the precontrol methods, an increase of 1.3%. Conclusions By demonstrating the optimized precontrol methods for a brucellosis model built on a dynamic threshold–based microcomputer model, this study provides theoretical support for the suppression of Brucella and the improved usage of protective measures by key populations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuxuan Zhang ◽  
Chen Gong ◽  
Dawei Li ◽  
Zhi-Wei Wang ◽  
Shengda D. Pu ◽  
...  

AbstractA reasonable prediction of infectious diseases’ transmission process under different disease control strategies is an important reference point for policy makers. Here we established a dynamic transmission model via Python and realized comprehensive regulation of disease control measures. We classified government interventions into three categories and introduced three parameters as descriptions for the key points in disease control, these being intraregional growth rate, interregional communication rate, and detection rate of infectors. Our simulation predicts the infection by COVID-19 in the UK would be out of control in 73 days without any interventions; at the same time, herd immunity acquisition will begin from the epicentre. After we introduced government interventions, a single intervention is effective in disease control but at huge expense, while combined interventions would be more efficient, among which, enhancing detection number is crucial in the control strategy for COVID-19. In addition, we calculated requirements for the most effective vaccination strategy based on infection numbers in a real situation. Our model was programmed with iterative algorithms, and visualized via cellular automata; it can be applied to similar epidemics in other regions if the basic parameters are inputted, and is able to synthetically mimic the effect of multiple factors in infectious disease control.


2017 ◽  
Vol 19 (2) ◽  
pp. 126-130
Author(s):  
Rifatun Hasanah ◽  
Setyowati Setyowati ◽  
Noor Tifauzah

Background:One of the efforts in preventing congenital food disease is by washing the cutlery perfectly. The cutlery used by patients with infectious diseases should be noted more, because it has a risk in disease transmission through cutlery. The process of washing the cutlery for infected patients in Queen Latifa Hospital use three compartement sink method with hot water, while the three compartement sink method with clorine solvent has never been tested. Purpose: Research was to determine the difference in the number of germs in the tool was washed using three compartement sink method with hot water and with clorine solvent. Method:Types of research is experiment with rancangan percobaan acak kelompok (RAK). The object of this research is 4 plates and 4 bowls. The number of experimental units in this research were 2 treatments x 2 cutlery x 2 checks x 2 reapetitions = 16 experimental units. The analysis used independent t-test with 95% confidence level. Result :The average number of germs in the cutlery washed using the three compartment sink method with hot water was 1 x 101 cfu / cm2, whereas with chlorine solvent is 0.2 cfu / cm2. Independent test t-test shows p = 0.049 which means the hypothesis is accepted. onclusion : There are differences in the number of germs in the washing cutlery using the three compartment sink method with hot water and with chlorine solvent.   Keywords: number of germs, cutlery, three compartment sink


2017 ◽  
Vol 19 (2) ◽  
pp. 126
Author(s):  
Rifatun Hasanah ◽  
Setyowati Setyowati ◽  
Noor Tifauzah

Background:One of the efforts in preventing congenital food disease is by washing the cutlery perfectly. The cutlery used by patients with infectious diseases should be noted more, because it has a risk in disease transmission through cutlery. The process of washing the cutlery for infected patients in Queen Latifa Hospital use three compartement sink method with hot water, while the three compartement sink method with clorine solvent has never been tested. Purpose: Research was to determine the difference in the number of germs in the tool was washed using three compartement sink method with hot water and with clorine solvent. Method:Types of research is experiment with rancangan percobaan acak kelompok (RAK). The object of this research is 4 plates and 4 bowls. The number of experimental units in this research were 2 treatments x 2 cutlery x 2 checks x 2 reapetitions = 16 experimental units. The analysis used independent t-test with 95% confidence level. Result :The average number of germs in the cutlery washed using the three compartment sink method with hot water was 1 x 101 cfu / cm2, whereas with chlorine solvent is 0.2 cfu / cm2. Independent test t-test shows p = 0.049 which means the hypothesis is accepted. Conclusion : There are differences in the number of germs in the washing cutlery using the three compartment sink method with hot water and with chlorine solvent.


2018 ◽  
Vol 934 (4) ◽  
pp. 2-7
Author(s):  
P.A. Medvedev ◽  
M.V. Novgorodskaya

This work contains continued research carried out on improving mathematical models of the Gauss-Krueger projection in accordance with the parameters of any ellipsoid with the removal of points from the axial meridian to l ≤ 6° . In terms of formulae earlier derived by the authors with improved convergence for the calculation of planar rectangular coordinates by geodesic coordinates, the algorithms for determining the convergence of meridians on the plane and the scale of the image are obtained. The improvement of the formulae represented in the form of series in powers of the difference in longitudes was accomplished by separating spherical terms in series and then replacing their approximate sums by exact expressions using the formulae of spherical trigonometry. As in previous works published in this journal [7, 8], determining the sums of the spherical terms was carried out according to the laws of the transverse-cylindrical projection of the sphere on the plane. Theoretical studies are given and formulae are proposed for estimating the observational errors in the results of the derived algorithms. The maximum of observational errors of convergence of meridians and scale, proceeding from the specified accuracy of the determined quantities was established through analytical methods.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 938
Author(s):  
Hanwei Bao ◽  
Zaiyu Wang ◽  
Zihao Liu ◽  
Gangyan Li

In contrast to the traditional pneumatic braking system, the electronic-controlled pneumatic braking system of commercial vehicles is a new system and can remedy the defects of the conventional braking system, such as long response time and low control accuracy. Additionally, it can adapt to the needs and development of autonomous driving. As the key pressure regulating component in electronic-controlled pneumatic braking system of commercial vehicles, automatic pressure regulating valves can quickly and accurately control the braking pressure in real time through an electronic control method. By aiming at improving driving comfort on the premise of ensuring braking security, this paper took the automatic pressure regulating valve as the research object and studied the pressure change rate during the braking process. First, the characteristics of the automatic pressure regulating valve and the concept of the pressure change rate were elaborated. Then, with the volume change of automatic pressure regulating valve in consideration, the mathematical model based on gas dynamics and the association model between pressure change rate and vehicle dynamic model was established in MATLAB/Simulink and analyzed. Next, through the experimental test of a sample product, the mathematical models have been verified. Finally, the key structure parameters affecting the pressure change rate of the automatic pressure regulating valve and the influence law have been identified; therefore, appropriate design advice and theoretical support have been provided to improve driving comfort.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ellen Brooks-Pollock ◽  
Hannah Christensen ◽  
Adam Trickey ◽  
Gibran Hemani ◽  
Emily Nixon ◽  
...  

AbstractControlling COVID-19 transmission in universities poses challenges due to the complex social networks and potential for asymptomatic spread. We developed a stochastic transmission model based on realistic mixing patterns and evaluated alternative mitigation strategies. We predict, for plausible model parameters, that if asymptomatic cases are half as infectious as symptomatic cases, then 15% (98% Prediction Interval: 6–35%) of students could be infected during the first term without additional control measures. First year students are the main drivers of transmission with the highest infection rates, largely due to communal residences. In isolation, reducing face-to-face teaching is the most effective intervention considered, however layering multiple interventions could reduce infection rates by 75%. Fortnightly or more frequent mass testing is required to impact transmission and was not the most effective option considered. Our findings suggest that additional outbreak control measures should be considered for university settings.


2013 ◽  
Vol 141 (2) ◽  
pp. 798-808 ◽  
Author(s):  
Zhifang Xu ◽  
Yi Wang ◽  
Guangzhou Fan

Abstract The relatively smooth terrain embedded in the numerical model creates an elevation difference against the actual terrain, which in turn makes the quality control of 2-m temperature difficult when forecast or analysis fields are utilized in the process. In this paper, a two-stage quality control method is proposed to address the quality control of 2-m temperature, using biweight means and a progressive EOF analysis. The study is made to improve the quality control of the observed 2-m temperature collected by China and its neighboring areas, based on the 6-h T639 analysis from December 2009 to February 2010. Results show that the proposed two-stage quality control method can secure the needed quality control better, compared with a regular EOF quality control process. The new method is, in particular, able to remove the data that are dotted with consecutive errors but showing small fluctuations. Meanwhile, compared with the lapse rate of temperature method, the biweight mean method is able to remove the systematic bias generated by the model. It turns out that such methods make the distributions of observation increments (the difference between observation and background) more Gaussian-like, which ensures the data quality after the quality control.


Science ◽  
2021 ◽  
Vol 372 (6538) ◽  
pp. eabg3055 ◽  
Author(s):  
Nicholas G. Davies ◽  
Sam Abbott ◽  
Rosanna C. Barnard ◽  
Christopher I. Jarvis ◽  
Adam J. Kucharski ◽  
...  

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.


Sign in / Sign up

Export Citation Format

Share Document