Digital Epidemiology of Innovation (Preprint)

2021 ◽  
Author(s):  
Ivan Triana ◽  
LUIS PINO ◽  
Dennise Rubio

UNSTRUCTURED Bio and infotech revolution including data management are global tendencies that have a relevant impact on healthcare. Concepts such as Big Data, Data Science and Machine Learning are now topics of interest within medical literature. All of them are encompassed in what recently is named as digital epidemiology. The purpose of this article is to propose our definition of digital epidemiology with the inclusion of a further aspect: Innovation. It means Digital Epidemiology of Innovation (DEI) and show the importance of this new branch of epidemiology for the management and control of diseases. In this sense, we will describe all characteristics concerning to the topic, current uses within medical practice, application for the future and applicability of DEI as conclusion.

2018 ◽  
Vol 15 (3) ◽  
pp. 497-498 ◽  
Author(s):  
Ruth C. Carlos ◽  
Charles E. Kahn ◽  
Safwan Halabi

2020 ◽  
pp. 239-254
Author(s):  
David W. Dorsey

With the rise of the internet and the related explosion in the amount of data that are available, the field of data science has expanded rapidly, and analytic techniques designed for use in “big data” contexts have become popular. These include techniques for analyzing both structured and unstructured data. This chapter explores the application of these techniques to the development and evaluation of career pathways. For example, data scientists can analyze online job listings and resumes to examine changes in skill requirements and careers over time and to examine job progressions across an enormous number of people. Similarly, analysts can evaluate whether information on career pathways accurately captures realistic job progressions. Within organizations, the increasing amount of data make it possible to pinpoint the specific skills, behaviors, and attributes that maximize performance in specific roles. The chapter concludes with ideas for the future application of big data to career pathways.


2020 ◽  
Vol 9 (2) ◽  
pp. 25-36
Author(s):  
Necmi Gürsakal ◽  
Ecem Ozkan ◽  
Fırat Melih Yılmaz ◽  
Deniz Oktay

The interest in data science is increasing in recent years. Data science, including mathematics, statistics, big data, machine learning, and deep learning, can be considered as the intersection of statistics, mathematics and computer science. Although the debate continues about the core area of data science, the subject is a huge hit. Universities have a high demand for data science. They are trying to live up to this demand by opening postgraduate and doctoral programs. Since the subject is a new field, there are significant differences between the programs given by universities in data science. Besides, since the subject is close to statistics, most of the time, data science programs are opened in the statistics departments, and this also causes differences between the programs. In this article, we will summarize the data science education developments in the world and in Turkey specifically and how data science education should be at the graduate level.


2014 ◽  
Vol 3 (2) ◽  
pp. 92-109 ◽  
Author(s):  
A.H. Buckman ◽  
M. Mayfield ◽  
Stephen B.M. Beck

Purpose – Within the building sector a lack of clarity in terminology does not help designers, clients or researchers. Non-domestic buildings have shown rapid increases in the use of advanced technology and control systems with varying drivers, many of which are labelled as intelligent. The term smart has been used interchangeably with intelligent without any clear distinction between the two. If the term Smart Buildings represented a separate, more advanced grouping, it would provide an opportunity to focus the future progress of non-domestic building development. The paper aims to discuss these issues. Design/methodology/approach – Drawing upon academic and industrial literature and experience, this paper reviews the scope of Intelligent Buildings and the current available definitions of Smart Buildings to form a clear definition of both smart and Intelligent Buildings. Findings – These definitions define the border between the intelligent and the (more advanced) Smart Building. The upper bound of the Smart Building is defined by (the future development of) the predictive building. Originality/value – This work provides a clear focus which will allow the progression of the non-domestic building sector by providing guidance and aspiration, as well as providing a platform upon which a large amount of technical work can be based.


2016 ◽  
Vol 21 (3) ◽  
pp. 525-547 ◽  
Author(s):  
Scott Tonidandel ◽  
Eden B. King ◽  
Jose M. Cortina

Advances in data science, such as data mining, data visualization, and machine learning, are extremely well-suited to address numerous questions in the organizational sciences given the explosion of available data. Despite these opportunities, few scholars in our field have discussed the specific ways in which the lens of our science should be brought to bear on the topic of big data and big data's reciprocal impact on our science. The purpose of this paper is to provide an overview of the big data phenomenon and its potential for impacting organizational science in both positive and negative ways. We identifying the biggest opportunities afforded by big data along with the biggest obstacles, and we discuss specifically how we think our methods will be most impacted by the data analytics movement. We also provide a list of resources to help interested readers incorporate big data methods into their existing research. Our hope is that we stimulate interest in big data, motivate future research using big data sources, and encourage the application of associated data science techniques more broadly in the organizational sciences.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Martin Forstner

AbstractThe Internet of things will influence all professional environments, including translation services. Advances in machine learning, supported by accelerating improvements in computer linguistics, have enabled new systems that can learn from their own experience and will have repercussions on the workflow processes of translators or even put their services at risk in the expected digitalized society. Outsourcing has become a common practice and working in the cloud and in the crowd tend to enable translating on a very low-cost level. Confronted with promising new labels like


2017 ◽  
Vol 7 (2) ◽  
Author(s):  
Dicky R. M. Nainggolan

<p><em><strong>Abstract</strong> – Data are the prominent elements in scientific researches and approaches. Data Science methodology is used to select and to prepare enormous numbers of data for further processing and analysing. Big Data technology collects vast amount of data from many sources in order to exploit the information and to visualise trend or to discover a certain phenomenon in the past, present, or in the future at high speed processing capability. Predictive analytics provides in-depth analytical insights and the emerging of machine learning brings the data analytics to a higher level by processing raw data with artificial intelligence technology. Predictive analytics and machine learning produce visual reports for decision makers and stake-holders. Regarding cyberspace security, big data promises the opportunities in order to prevent and to detect any advanced cyber-attacks by using internal and external security data.</em></p><p><br /><em><strong>Keywords</strong>: Big Data, Cyber Security, Data Science, Intelligence, Predictive Analytics</em></p><p><br /><em><strong>Abstrak</strong> – Data merupakan unsur terpenting dalam setiap penelitian dan pendekatan ilmiah. Metodologi sains data digunakan untuk memilah, memilih dan mempersiapkan sejumlah data untuk diproses dan dianalisis. Teknologi big data mampu mengumpulkan data dengan sangat banyak dari berbagai sumber dengan tujuan untuk mendapatkan informasi dengan visualisasi tren atau menyingkapkan pengetahuan dari suatu peristiwa yang terjadi baik dimasa lalu, sekarang, maupun akan datang dengan kecepatan pemrosesan data sangat tinggi. Analisis prediktif memberikan wawasan analisis lebih dalam dan kemunculan machine learning membawa analisis data ke tingkat yang lebih tinggi dengan bantuan teknologi kecerdasan buatan dalam tahap pemrosesan data mentah. Analisis prediktif dan machine learning menghasilkan laporan berbentuk visual untuk pengambil keputusan dan pemangku kepentingan. Berkenaan dengan keamanan siber, big data menjanjikan kesempatan dalam rangka untuk mencegah dan mendeteksi setiap serangan canggih siber dengan memanfaatkan data keamanan internal dan eksternal.</em></p><p><br /><strong>Kata Kunci</strong>: Analisis Prediktif, Big Data, Intelijen, Keamanan Siber, Sains Data</p>


2017 ◽  
Vol 7 (2) ◽  
Author(s):  
Dicky R. M. Nainggolan

<p><strong>Abstrak</strong> – Data merupakan unsur terpenting dalam setiap penelitian dan pendekatan ilmiah. Metodologi sains data digunakan untuk memilah, memilih dan mempersiapkan sejumlah data untuk diproses dan dianalisis. Teknologi big data mampu mengumpulkan data dengan sangat banyak dari berbagai sumber dengan tujuan untuk mendapatkan informasi dengan visualisasi tren atau menyingkapkan pengetahuan dari suatu peristiwa yang terjadi baik dimasa lalu, sekarang, maupun akan datang dengan kecepatan pemrosesan data sangat tinggi. Analisis prediktif memberikan wawasan analisis lebih dalam dan kemunculan machine learning membawa analisis data ke tingkat yang lebih tinggi dengan bantuan teknologi kecerdasan buatan dalam tahap pemrosesan data mentah. Analisis prediktif dan machine learning menghasilkan laporan berbentuk visual untuk pengambil keputusan dan pemangku kepentingan. Berkenaan dengan keamanan siber, big data menjanjikan kesempatan dalam rangka untuk mencegah dan mendeteksi setiap serangan canggih siber dengan memanfaatkan data keamanan internal dan eksternal.</p><p><br /><strong>Kata Kunci</strong>: analisis prediktif, big data, intelijen, keamanan siber, sains data</p><p><strong><em>Abstract</em> </strong>– Data are the prominent elements in scientific researches and approaches. Data Science methodology is used to select and to prepare enormous numbers of data for further processing and analysing. Big Data technology collects vast amount of data from many sources in order to exploit the information and to visualise trend or to discover a certain phenomenon in the past, present, or in the future at high speed processing capability. Predictive analytics provides in-depth analytical insights and the emerging of machine learning brings the data analytics to a higher level by processing raw data with artificial intelligence technology. Predictive analytics and machine learning produce visual reports for decision makers and stake-holders. Regarding cyberspace security, big data promises the opportunities in order to prevent and to detect any advanced cyber-attacks by using internal and external security data.</p><p><br /><strong><em>Keywords</em></strong>: big data, cyber security, data science, intelligence, predictive analytics</p>


2016 ◽  
Vol 8 (2) ◽  
pp. 69-83 ◽  
Author(s):  
Michele Baldassarre

Abstract Due to the increasing growth in available data in recent years, all areas of research and the managements of institutions and organisations, specifically schools and universities, feel the need to give meaning to this availability of data. This article, after a brief reference to the definition of big data, intends to focus attention and reflection on their type to proceed to an extension of their characterisation. One of the hubs to make feasible the use of Big Data in operational contexts is to give a theoretical basis to which to refer. The Data, Information, Knowledge and Wisdom (DIKW) model correlates these four aspects, concluding in Data Science, which in many ways could revolutionise the established pattern of scientific investigation. The Learning Analytics applications on online learning platforms can be tools for evaluating the quality of teaching. And that is where some problems arise. It becomes necessary to handle with care the available data. Finally, a criterion for deciding whether it makes sense to think of an analysis based on Big Data can be to think about the interpretability and relevance in relation to both institutional and personal processes.


10.2196/16607 ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. e16607 ◽  
Author(s):  
Christian Lovis

Data-driven science and its corollaries in machine learning and the wider field of artificial intelligence have the potential to drive important changes in medicine. However, medicine is not a science like any other: It is deeply and tightly bound with a large and wide network of legal, ethical, regulatory, economical, and societal dependencies. As a consequence, the scientific and technological progresses in handling information and its further processing and cross-linking for decision support and predictive systems must be accompanied by parallel changes in the global environment, with numerous stakeholders, including citizen and society. What can be seen at the first glance as a barrier and a mechanism slowing down the progression of data science must, however, be considered an important asset. Only global adoption can transform the potential of big data and artificial intelligence into an effective breakthroughs in handling health and medicine. This requires science and society, scientists and citizens, to progress together.


Sign in / Sign up

Export Citation Format

Share Document