Hydrogenation of Acetylene: Kinetic Studies and Reactor Modeling

Author(s):  
Navid Mostoufi ◽  
Ali Ghoorchian ◽  
Rahmat Sotudeh-Gharebagh

The kinetics of acetylene hydrogenation has been studied in a fixed bed reactor of a commercial Pd/Al2O3 catalyst. The experiments were carried out at 30, 50 and 70 ºC with various feed compositions at atmospheric pressure. The experiments were repeated at 70 ºC in the presence of the used catalyst to determine the effect of the catalyst deactivation where the corresponding deactivation rate constant was determined in order to predict the activity of the catalyst during each run. Two well known kinetic models were used for a nearly similar catalyst to predict the experimental data of this work and none of them were found satisfactory. A new model was then proposed to fit the experimental data. The hydrogenation reactor was also simulated at industrial operating conditions with the proposed kinetics for both plug and dispersion flows. The results of these simulations were almost close to each other in most cases.

Author(s):  
Azita Barkhordari ◽  
Shohreh Fatemi ◽  
Mahdi Daneshpayeh ◽  
Hossain Zamani

Two types of kinetic modeling, continuous and discrete lump model were studied and compared in this research in order to model the industrial scale VGO hydrocracking process. The experimental data obtained from a pilot-scale fixed bed reactor over Ni-Mo/Silica-Alumina catalyst in a wide range of operating conditions was used for prediction and tuning the kinetic parameters using Genetic algorithm. In this study, the discrete lump model with four parallel reactions to four lumped products showed more convergence to the experimental data than the continuous lump model. Afterward, the discrete kinetic model was used to simulate the vacuum gas oil (VGO) industrial hydrocracking reaction accompanied by catalyst deactivation. The activity of the catalyst was taken as a time dependent variable and the first year of operational data were used to derive the deactivation parameter. The refinery test runs spanning over the last two and half years of operation were used to validate the model and interpret the simulation results. A comparison between the industrial and the predicted data showed that there is a good agreement between them and the presented model provides a reasonable fit to estimate the product yields of LPG, naphtha, kerosene, diesel.


Author(s):  
Diana Mier ◽  
Andrés Tomás Aguayo ◽  
Alaitz Atutxa ◽  
Ana G Gayubo ◽  
Javier Bilbao

A study has been carried out on the effect of acid catalyst properties and operating conditions (methanol/n-butane ratio in the feed, temperature, space time, time on stream) on the yield of light olefins (C2-C4) in the simultaneous cracking of n-butane and methanol. The operation has been carried out in an isothermal fixed bed reactor in the 400-575 °C range, using catalysts prepared based on HZSM-5 zeolites (with different Si/Al ratio), HY, Ni/HZSM-5 and SAPO-18. The results are evidence of a synergism between the transformation reactions of both reactants, whose consequence is an increase in the yield of olefins that correspond to the transformation of methanol and the cracking of n-butane. Furthermore, catalyst deactivation by coke is significantly attenuated compared to the corresponding transformation of methanol. Based on the effect of operating conditions on product distribution, a kinetic model is proposed by combining the schemes corresponding to the transformation of individual components.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Amir Rahimi ◽  
Sogand Hamidi

In this study, the performance of a fixed–bed tubular reactor for the production of phthalic anhydride is mathematically analyzed. The conversion degree and reactor temperature values are compared with the measured one in a tubular reactor applied in Farabi petrochemical unit in Iran as well as reported data in the literature for a pilot plate. The comparisons are satisfactory. The effects of some operating parameters including reactor length, feed temperature, reactor pressure, and existence of an inert in the catalytic bed are investigated. The optimum value of each parameter is determined on the basis of the corresponding operating conditions.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1374
Author(s):  
Andreas Brune ◽  
Andreas Seidel-Morgenstern ◽  
Christof Hamel

This study intends to provide insights into various aspects related to the reaction kinetics of the VOx catalyzed propane dehydrogenation including main and side reactions and, in particular, catalyst deactivation and regeneration, which can be hardly found in combination in current literature. To kinetically describe the complex reaction network, a reduced model was fitted to lab scale experiments performed in a fixed bed reactor. Additionally, thermogravimetric analysis (TGA) was applied to investigate the coking behavior of the catalyst under defined conditions considering propane and propene as precursors for coke formation. Propene was identified to be the main coke precursor, which agrees with results of experiments using a segmented fixed bed reactor (FBR). A mechanistic multilayer-monolayer coke growth model was developed to mathematically describe the catalyst coking. Samples from long-term deactivation experiments in an FBR were used for regeneration experiments with oxygen to gasify the coke deposits in a TGA. A power law approach was able to describe the regeneration behavior well. Finally, the results of periodic experiments consisting of several deactivation and regeneration cycles verified the long-term stability of the catalyst and confirmed the validity of the derived and parametrized kinetic models for deactivation and regeneration, which will allow model-based process development and optimization.


2019 ◽  
Vol 35 (2) ◽  
pp. 139-190 ◽  
Author(s):  
Nico Jurtz ◽  
Matthias Kraume ◽  
Gregor D. Wehinger

Abstract In 2006, Dixon et al. published the comprehensive review article entitled “Packed tubular reactor modeling and catalyst design using computational fluid dynamics.” More than one decade later, many researchers have contributed to novel insights, as well as a deeper understanding of the topic. Likewise, complexity has grown and new issues have arisen, for example, by coupling microkinetics with computational fluid dynamics (CFD). In this review article, the latest advances are summarized in the field of modeling fixed-bed reactors with particle-resolved CFD, i.e. a geometric resolution of every pellet in the bed. The current challenges of the detailed modeling are described, i.e. packing generation, meshing, and solving with an emphasis on coupling microkinetics with CFD. Applications of this detailed approach are discussed, i.e. fluid dynamics and pressure drop, dispersion, heat and mass transfer, as well as heterogeneous catalytic systems. Finally, conclusions and future prospects are presented.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1462
Author(s):  
Sichen Liu ◽  
Javier A. Otero ◽  
Maria Martin-Martinez ◽  
Daniel Rodriguez-Franco ◽  
Juan J. Rodriguez ◽  
...  

Chloromethanes are a group of volatile organic compounds that are harmful to the environment and human health. Abundant studies have verified that hydrodechlorination might be an effective treatment to remove these chlorinated pollutants. The most outstanding advantages of this technique are the moderate operating conditions used and the possibility of obtaining less hazardous valuable products. This review presents a global analysis of experimental and theoretical studies regarding the hydrodechlorination of chloromethanes. The catalysts used and their synthesis methods are summarized. Their physicochemical properties are analyzed in order to deeply understand their influence on the catalytic performance. Moreover, the main causes of the catalyst deactivation are explained, and prevention and regeneration methods are suggested. The reaction systems used and the effect of the operating conditions on the catalytic activity are also analyzed. Besides, the mechanisms and kinetics of the process at the atomic level are reviewed. Finally, a new perspective for the upgrading of chloromethanes, via hydrodechlorination, to valuable hydrocarbons for industry, such as light olefins, is discussed.


2020 ◽  
Vol 10 (24) ◽  
pp. 8962
Author(s):  
Mohammad Reza Ghaani ◽  
Satoshi Takeya ◽  
Niall J. English

There have been studies on gas-phase promoter facilitation of H2-containing clathrates. In the present study, non-equilibrium molecular dynamics (NEMD) simulations were conducted to analyse hydrogen release and uptake from/into propane planar clathrate surfaces at 180–273 K. The kinetics of the formation of propane hydrate as the host for hydrogen as well as hydrogen uptake into this framework was investigated experimentally using a fixed-bed reactor. The experimental hydrogen storage capacity propane hydrate was found to be around 1.04 wt% in compare with the theoretical expected 1.13 wt% storage capacity of propane hydrate. As a result, we advocate some limitation of gas-dispersion (fixed-bed) reactors such as the possibility of having un-reacted water as well as limited diffusion of hydrogen in the bulk hydrate.


Sign in / Sign up

Export Citation Format

Share Document