Catalytic Effects at Pyrolysis of Wheat Grains Impregnated with Nickel Salts

Author(s):  
Tanase Dobre ◽  
Oana C Parvulescu ◽  
Gustav Iavorschi ◽  
Anicuta Stoica ◽  
Marta Stroescu

Pyrolysis was performed on wheat grains untreated or impregnated with nickel nitrate solutions, into a fixed bed column, in the presence of a carbon dioxide stream. This produced a char with or without nickel, pyrolytic oil and a gaseous fraction. The distribution of these fractions was dependent on variations in heat flux, carbon dioxide superficial velocity and nickel nitrate solution concentration. The paper focused on establishing the qualitative and quantitative influence of these experimental variables on pyrolysis dynamics. In order to obtain a process characterization, a factorial experiment was used, wherein the pyrolysed material mass, collected oil mass, operating time, material bed temperature, volatiles temperature and column wall temperature were the evaluated process responses. A model reproducing pyrolysis curves was proposed considering the process dynamics as a result of competition between the appearance and extension of local pyrolysis points.

2018 ◽  
Vol 69 (3) ◽  
pp. 553-556 ◽  
Author(s):  
Doinita Roxana Cioroiu ◽  
Oana Cristina Parvulescu ◽  
Tanase Dobre ◽  
Cristian Raducanu ◽  
Claudia Irina Koncsag ◽  
...  

Slow pyrolysis of algal biomass of Cystoseira barbata was performed in a fixed bed reactor using carbon dioxide as a sweeping gas and a reactant in the process. Pyrolysis products consisted of a biochar, a bio-oil, and pyrolytic gases. According to a 23 factorial experiment, 8 tests were conducted for 1 hr at two levels of each process factor, i.e., specific heat flow rate (7540, 9215 W/m3), carbon dioxide superficial velocity (1.3, 2.6 cm/s), and bulk density of fixed bed biomass (221, 332 kg/m3). Correlations between these factors and final process responses in terms of mean bed temperature (461-663 oC), biochar yield (15.2-26.7%), bio-oil yield (29.9-34.8%), and BET surface area of biochar (45.17-91.12 m2/g) were established.


2016 ◽  
Vol 14 (1) ◽  
pp. 491-515 ◽  
Author(s):  
Zeeshan Nawaz

AbstractThe catalytic dehydrogenation of iso-butane to iso-butylene is an equilibrium limited endothermic reaction and requires high temperature. The catalyst deactivates quickly, due to deposition of carbonaceous species and countered by periodic regeneration. The reaction-engineering constraints are tied up with operation and/or technology design features. CATOFIN® is a sophisticated commercialized technology for propane/iso-butane dehydrogenation using multiple adiabatic fixed-bed reactors having Cr2O3/Al2O3 as catalyst, that undergo cyclic operations (~18–30m); dehydrogenation, regeneration, evacuation, purging and reduction. It is always a concern, how to maintain CATOFIN® reactor at an optimum production, while overcoming gradual decrease of heat in catalyst bed and deactivation. A homogeneous one-dimensional dynamic reactor model for a commercial CATOFIN® fixed-bed iso-butane dehydrogenation reactor is developed in an equation oriented (EO) platform Aspen Custom Modeler (ACM), for operational optimization and process intensification. Both reaction and regeneration steps were modeled and results were validated. The model predicts the dynamic behavior and demonstrates the extent of catalyst utilization with operating conditions and time, coke formation and removal, etc. The model computes optimum catalyst bed temperature profiles, feed rate, pre-heating, rates for reaction and regeneration, fuel gas requirement, optimum catalyst amount, overall cycle time optimization, and suggest best operational philosophy.


2010 ◽  
Vol 5 (2) ◽  
pp. 115-120
Author(s):  
Raharjo Raharjo

An investigation of the contribution of quartz sand in the bentonite mixture as the backfill materials on the shallow land burial of radioactive waste has been done. The experiment objective is to determine the effect of quartz sand in a bentonite mixture with bentonite particle sizes of -20+40, -40+60, and -60+80 mesh on the retardation factor and the uranium dispersion in the simulation of uranium migration in the backfill materials. The experiment was carried out by the fixed bed method in the column filled by the bentonite mixture with a bentonite-to-quartz sand weight percent ratio of 0/100, 25/75, 50/50, 75/25, and 100/0 on the water saturated condition flown by uranyl nitrate solution at concentration (Co) of 500 ppm. The concentration of uranium in the effluents in interval 15 minutes represented as Ct was analyzed by spectrophotometer, then using Co and Ct, retardation factor (R) and dispersivity () were determined. The experiment data showed that the bentonite of -60+80 mesh and the quartz sand of -20+40 mesh on bentonite-to-quartz sand with weight percent ratio of 50/50 gave the highest retardation factor and dispersivity of 18.37 and 0.0363 cm, respectively.   Keywords: bentonite, quartz sand, backfill materials, radioactive waste  


2018 ◽  
Vol 57 (18) ◽  
pp. 6391-6400 ◽  
Author(s):  
Steffi Matthischke ◽  
Stefan Roensch ◽  
Robert Güttel

1998 ◽  
Vol 37 (1) ◽  
pp. 185-191 ◽  
Author(s):  
Hiromu Hayashi ◽  
Jun Taniuchi ◽  
Nobuyoshi Furuyashiki ◽  
Shigeru Sugiyama ◽  
Shinichi Hirano ◽  
...  

2012 ◽  
Vol 550-553 ◽  
pp. 396-399
Author(s):  
Chul Min Park ◽  
Won Ju Ahn ◽  
Woong Kyu Jo ◽  
Jin Hun Song ◽  
Chang Yeop Oh ◽  
...  

If the surface of the titanium chips (TC) was modified by thermal treatment under air atmosphere, it could be reused as catalyst support or photocatalytic materials. TC-supported CuO and ZnO catalysts were prepared by impregnation (IMP) method and co-precipitation (CP) method using cupric nitrate and zinc nitrate solution as precursors. Loading of CuO and ZnO on TC was 40.6wt% and 50.3wt%, respectively. The catalytic activity for CO2 hydrogenation was investigated using a flow-typed reactor under various pressures. Conversion of carbon dioxide to methyl alcohol over the CuO-ZnO/TC catalyst by CP and IMP methods were ca. 22% and ca. 10%, respectively. Conversion of carbon dioxide over CuO-ZnO/TC catalyst by CP method was increased with increasing reaction temperature in ranging of 15atm to 30 atm. Maximum selectivity and yield to methyl alcohol over CuO-ZnO/TC catalyst at 250°C were ca. 90% at 20 atm and ca. 18.2% at 30 atm, respectively.


1995 ◽  
Vol 68 (3) ◽  
pp. 1030-1035 ◽  
Author(s):  
Shinichi Hirano ◽  
Naoya Shigemoto ◽  
Shinichi Yamada ◽  
Hiromu Hayashi
Keyword(s):  

2009 ◽  
Vol 60 (8) ◽  
pp. 697 ◽  
Author(s):  
Mahabubur Mollah ◽  
Rob Norton ◽  
Jeff Huzzey

The AGFACE project commenced in June 2007 at Horsham (36°45′07″S, 142°06′52″E; 127 m elevation), Victoria, Australia. Its aim is to quantify the interactive effects of elevated atmospheric carbon dioxide concentration (e[CO2]), nitrogen, temperature (accomplished by early and late sowing times), and soil moisture on the growth, yield, and water use of wheat (Triticum aestivum L.) under Australian conditions. The main engineering goal of the project was to maintain an even temporal and spatial distribution of carbon dioxide (CO2) at 550 μmol/mol within AGFACE rings containing the experimental treatments. Monitoring showed that e[CO2] at the ring-centres was maintained at or above 90% of the target (495 μmol/mol) between 93 and 98% of the operating time across the 8 rings and within ±10% of the target (495–605 μmol/mol) between 86 and 94% of the time. The carbon dioxide concentration ([CO2]) measured inside the rings declined non-linearly with increasing distance downwind of the CO2 source and differed by 3–13% in concentration between the two canopy heights in each ring, but was not affected by wind speed or small variations in [CO2] at the ring-centres. The median values for model-predicted concentrations within the inner 11-m-diameter portion of the rings (>80% of the ring area) varied between 524 and 871 μmol/mol but remained close to target near the centres. The design criteria adopted from existing pure CO2 fumigating FACE systems and new ideas incorporated in the AGFACE system provided a performance similar to its equivalent systems. This provides confidence in the results that will be generated from experiments using the AGFACE system.


2020 ◽  
Vol 4 (3) ◽  
pp. 1417-1426 ◽  
Author(s):  
Sebastian Bock ◽  
Robert Zacharias ◽  
Viktor Hacker

Fixed-bed chemical looping for the generation of high purity hydrogen with sequestration of pure carbon dioxide and nitrogen.


Sign in / Sign up

Export Citation Format

Share Document