ELASTIC-PLASTIC CONSTITUTIVE MODELS FOR THE BEHAVIOR OF SAND

1984 ◽  
Vol 1984 (343) ◽  
pp. 255-265 ◽  
Author(s):  
Hiroyoshi HIRAI ◽  
Eiji YANAGISAWA ◽  
Masao SATAKE
2005 ◽  
Vol 42 (4) ◽  
pp. 1066-1085 ◽  
Author(s):  
Kianoosh Hatami ◽  
Richard J Bathurst

The paper describes a numerical model that was developed to simulate the response of three instrumented, full-scale, geosynthetic-reinforced soil walls under working stress conditions. The walls were constructed with a fascia column of solid modular concrete units and clean, uniform sand backfill on a rigid foundation. The soil reinforcement comprised different arrangements of a weak biaxial polypropylene geogrid reinforcement material. The properties of backfill material, the method of construction, the wall geometry, and the boundary conditions were otherwise nominally the same for each structure. The performance of the test walls up to the end of construction was simulated with the finite-difference-based Fast Lagrangian Analysis of Continua (FLAC) program. The paper describes FLAC program implementation, material properties, constitutive models for component materials, and predicted results for the model walls. The results predicted with the use of nonlinear elastic-plastic models for the backfill soil and reinforcement layers are shown to be in good agreement with measured toe boundary forces, vertical foundation pressures, facing displacements, connection loads, and reinforcement strains. Numerical results using a linear elastic-plastic model for the soil also gave good agreement with measured wall displacements and boundary toe forces but gave a poorer prediction of the distribution of strain in the reinforcement layers.Key words: numerical modelling, retaining walls, reinforced soil, geosynthetics, FLAC.


2006 ◽  
Vol 59 (3) ◽  
pp. 146-175 ◽  
Author(s):  
Frederick Bloom

A survey is provided of the various constitutive models that have been used to study the phenomena of wave propagation in soils. While different material models have been proposed for the response of soils, it is now generally understood that no single model may be used over the entire range of pressures which are typically studied. The constitutive models reviewed in this paper include a number of effective stress and multiphase models, the volume distribution function model, and various versions of the P−α model. Also discussed are classical elastic-plastic models, models possessing different elastic constants in loading and unloading, variable modulus models, and capped elastic-plastic models.


Author(s):  
M. R. Brake ◽  
D. S. Aragon ◽  
D. J. VanGoethem ◽  
H. Sumali

Impact is a wide-spread phenomenon in mechanical systems that can have a significant effect on the system’s dynamics, stability, wear, and damage. The simulation of impact in complex, mechanical systems, however, is often too computationally intensive for high fidelity finite element analyses to be useful as design tools. As a result, rigid body dynamics and reduced order model simulations are often used, with the impact events modeled by ad hoc methods such as a constant coefficient of restitution or a penalty stiffness. The consequences of the choice of contact model are studied in this paper for a representative multiple-degrees of freedom mechanical system. Four contact models are considered in the analysis: a constant coefficient of restitution model, two similar elastic-plastic constitutive models, and one dissimilar elastic-plastic constitutive model. The predictions of wear, mechanical failure, and stability are assessed for each of the contact models, and the subsequent effect on the system design is investigated. These results emphasize the importance of choosing a realistic contact model when simulations are being used to drive the design of a system.


Author(s):  
Yukio Takahashi ◽  
Yoshihiko Tanaka

It is essential to predict the behavior of nuclear piping system under seismic loading to evaluate the structural integrity of nuclear power plants. Relatively large stress cycles may be applied to the piping systems under severe seismic loading and plastic deformation may occur cyclically in some portion of the systems. Accurate description of inelastic deformation under cyclic loading is indispensable for the precise estimation of strain cycles and accumulation potentially leading to the failure due to fatigue-ratcheting interaction. Elastic-plastic constitutive models based on the nonlinear kinematic hardening rule proposed by Ohno and Wang were developed for type 316 austenitic stainless steel and carbon steel JIS STPT410 (similar to ASTM A106 Gr.B), both of which are used in piping systems in nuclear power plants. Different deformation characteristics under cyclic loading in terms of memory of prior hardening were observed on these two materials and they were reflected in the modeling. Results of simulations under various loading conditions were compared with the test data to demonstrate the high capability of the constitutive models.


1989 ◽  
Vol 26 (2) ◽  
pp. 199-209 ◽  
Author(s):  
J.-H. Yin ◽  
J. Graham

Increased attention has recently been directed towards the influence of time and strain-rate effects on the behaviour of clays in one-dimensional (1-D) laboratory consolidation. The improved understanding coming from these studies must now be incorporated into improved constitutive models that can be used for analysis of foundation settlements. This paper presents a 1-D model for stepped loading using a new concept for establishing "equivalent times" during time-dependent straining. This model is then developed into a general constitutive equation for continuous loading. The model uses three parameters, λ, κ, and ψ, that can be easily found using conventional oedometer tests.The general model has been used to develop analytical solutions for creep tests, relaxation tests, constant rate of strain (CRSN) tests, and tests with constant rate of stress (CRSS). Results from three different clays have been used to examine the validity of the model. Key words: consolidation, constitutive modelling, elastic-plastic, viscous, time, creep, strain rate, relaxation.


Author(s):  
Xuejiao Shao ◽  
Hai Xie ◽  
Furui Xiong ◽  
Xiaolong Fu ◽  
Kaikai Shi ◽  
...  

Abstract In the fatigue assessment of nuclear components following the RCC-M B3200, if the results using the simplified elastic-plastic method cannot meet the Code’s requirements, it is necessary to conduct a detailed elastic-plastic fatigue analysis of the component. In this paper, the A-F and Chaboche nonlinear kinematic hardening constitutive models are used to conduct an elasto-plastic fatigue analysis for a typical nozzle component, aiming to calculate the secondary cumulative cyclic plastic strain of the structure induced by the rapid temperature change transient. The calculation method of nonlinear ratcheting behavior under cyclic loading is studied. The method of determining the parameters of constitutive model based on cyclic stable stress-strain curve is also studied. A sensitive study of the parameters for the same constitutive law is presented, including the results of cumulative plastic strain. The ratcheting behavior simulation calculated by different constitutive models are compared. The results show that the A-F model has a conservative prediction of ratcheting behavior as the dynamic recovery term is too strong. It was found that the Chaboche constitutive model is the better methodology for ratcheting analysis. In order to evaluate the bearing ability of the section, the membrane strain and bending strain is obtained by linearizing the node strain along the cross section. The ratios of membrane strain and membrane plus bending strain to total strain are calculated, which is helpful to determining the limit criteria for the cumulative strain of structures.


Sign in / Sign up

Export Citation Format

Share Document