scholarly journals ANALISIS EKSERGI PENGERINGAN IRISAN TEMULAWAK

2016 ◽  
Vol 36 (01) ◽  
pp. 96
Author(s):  
Lamhot Parulian Manalu ◽  
Armansyah Halomoan Tambunan

Java turmeric (Curcuma xanthorrhiza Roxb.) is a medicinal plant used as raw material for making herbal medicine, its rhizome cut into slices and dried so called simplicia. Curcuma has a harvest moisture content is high enough to need a great energy for drying. Generally, the theory used to analyze the energy efficiency is the first law of thermodynamics that describes the principle of conservation of energy. However, this theory has limitations in measuring the loss of energy quality. To determine whether the energy used in the drying process has been used optimally in terms of quality, the second law of thermodynamics -known as exergy analysis- is used. The purpose of this study is to determine the efficiency of the thin layer drying of curcuma slices with exergy analysis. The results show that the process conditions affect the energy utilization ratio and exergy efficiency of drying. Exergy analysis method based on the second law of thermodynamics has been used to determine the amount of exergy destroyed so that the efficiency of the drying process can be determined more accurately. Exergy efficiency varies between 96.5%-100% for temperatures of 50 °C to 70 °C at 40% RH and 82.3% - 100% for 20% to 40% RH at 50 °C.Keywords: Drying, energy, exergy efficiency, curcuma slices ABSTRAKTemulawak (Curcuma xanthorrhiza Roxb.) merupakan tanaman obat yang simplisianya digunakan sebagai bahan baku pembuatan jamu atau obat tradisional. Pengeringan merupakan proses utama dalam memproduksi simplisia. Untuk menganalisis efisiensi energi suatu proses pengeringan umumnya digunakan hukum termodinamika pertama yang menjelaskan tentang prinsip kekekalan energi. Akan tetapi teori ini mempunyai keterbatasan dalam mengukur penurunan kualitas energi. Untuk mengetahui apakah energi yang digunakan pada proses pengeringan sudah digunakan secara optimal dari sisi kualitas, digunakan hukum termodinamika kedua atau yang dikenal dengan analisis eksergi. Tujuan penelitian ini adalah menentukan efisiensi proses pengeringan lapisan tipis irisan temulawak dengan metode analisis energi dan eksergi. Dalam studi ini, metode analisis energi dan eksergi berdasarkan hukum termodinamika pertama dan kedua telah digunakan untuk menghitung rasio penggunaan energi dan besaran eksergi yang musnah (exergy loss). sehingga efisiensi proses pengeringan irisan temulawak dapat ditentukan secara akurat. Hasil penelitian menunjukkan bahwa kondisi proses pengeringan mempengaruhi rasio penggunaan energi dan efisiensi eksergi pengeringan. Semakin tinggi suhu dan RH pengeringan maka rasio penggunaan energi semakin rendah dan efisiensi eksergi semakin tinggi. Efisiensi eksergi pengeringan temulawak bervariasi antara 96,5%-100% untuk selang suhu 50 oC hingga 70 oC pada RH 40% serta 82,3% - 100% untuk selang RH 20% hingga 40% pada suhu 50 oC. Kata kunci: Pengeringan, energi, efisiensi eksergi, temulawak

2011 ◽  
Vol 130-134 ◽  
pp. 1578-1581
Author(s):  
Cai Juan Zhang ◽  
Li Gang Wang ◽  
Ling Nan Wu ◽  
Tong Liu ◽  
Qiang Lu ◽  
...  

With the social rapid development, the earth's limited primary energy such as coal, oil, natural gas etc will be exhausted; energy problem has caused worldwide widespread attention. Therefore, under the development of renewable energy, without exception, each country is actively trying to explore the new theory and using energy-saving and technology to improve energy utilization ratio and reduce the energy consumption and the harm on environment. Scientific analysis of energy saving is an important link of digging energy saving potential, effective energy analysis method plays a pivotal role in implementing saving energy. This paper summarized several energy analysis methods on the basis of the first and second law of thermodynamics, introduced the most widely used enthalpy analysis method, entropy analysis, exergy analysis and exergy economic analysis which are based on the second law of thermodynamics, introduced emphatically the specific consumption analysis theory development with exergy analysis and exergy economic analysis.


2013 ◽  
Vol 442 ◽  
pp. 183-186
Author(s):  
Kyoung Hoon Kim

Exergy analysis is performed for transcritical Organic Rankine Cycle (ORC) with internal heat exchanger based on the second law of thermodynamics. Effects of source temperature as well as turbine inlet pressure (TIP) are investigated on the exergy destructions (or anergies) of the system as well as exergy efficiency. Results show that irreversibility of the system decreases with increasing TIP or decreasing source temperature. Exergy efficiency decreases with increasing source temperature; however has a maximum value with respect to TIP.


2019 ◽  
Author(s):  
Sorush Niknamian

The turbojet engine operates on the ideal Brayton cycle (gas turbine) and consists of six main parts: diffusers, compressors, combustion chambers, turbines, afterburners and nozzles. Using computer code writing in MATLAB software environment, exergy analysis on all selected turbojet engine components, exergy analysis on J85-GE-21 turbojet engine for selective height of 10008000 meters above sea level at speeds of 200 m/s and temperatures of 10, 20 and 40 ° C have been provided and then, according to the system functions, the system is optimized based on the PSO method. For the purpose of optimization, variables of Mach number, efficiency of the compressor, turbine, nozzle and compressor pressure ratio are considered in the range of 0.6 to 1.4, 0.8 to 0.95, 0.8 to 0.95 and 7 to 10, respectively. The highest exergy efficiency of different parts of the engine at sea level with an inlet air velocity of 200 m/s corresponds to a diffuser with 73.1%. Then, the nozzle and combustion chamber are respectively 68.6% and 51.5%. The lowest exergy efficiency is related to compressor with 4%. After that, the afterburner is ranked second with 11.6%. Also, the values of entropy produced and the efficiency of the second law before optimization were 1176.99 and 479 w/k respectively and the same values after optimization were 1129 and 51.4 w/k respectively which is identified. After the optimization process, the amount of entropy produced is reduced and the efficiency of the second law of thermodynamics has increased.


Author(s):  
Sorush Niknamian

The turbojet engine operates on the ideal Brayton cycle (gas turbine) and consists of six main parts: diffusers, compressors, combustion chambers, turbines, afterburners and nozzles. Using computer code writing in MATLAB software environment, exergy analysis on all selected turbojet engine components, exergy analysis on J85-GE-21 turbojet engine for selective height of 1000-8000 meters above sea level at speeds of 200 m/s and temperatures of 10°C, 20°C and 40°C have been provided and then, according to the system functions, the system is optimized based on the PSO method. For the purpose of optimization, variables of Mach number, efficiency of the compressor, turbine, nozzle and compressor pressure ratio are considered in the range of 0.6 to 1.4, 0.8 to 0.95, 0.8 to 0.95 and 7 to 10, respectively. The highest exergy efficiency of different parts of the engine at sea level with an inlet air velocity of 200 m/s corresponds to a diffuser with 73.1%. Then, the nozzle and combustion chamber are respectively 68.6% and 51.5%. The lowest exergy efficiency is related to compressor with 4%. After that, the afterburner is ranked second with 11.6%. Also, the values of entropy produced and the efficiency of the second law before optimization were 1176.99 and 479 w/k respectively and the same values after optimization were 1129 and 51.4 w/k respectively which is identified. After the optimization process, the amount of entropy produced is reduced and the efficiency of the second law of thermodynamics has increased.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Yunhua Zhu ◽  
Sriram Somasundaram ◽  
James W. Kemp

National energy security concerns related to liquid transportation fuels have revived interests in alternative liquid fuel sources. Coal-to-fuel technologies feature high efficiency energy conversion and environmental advantages. While a number of factors are driving coal-to-fuel projects forward, there are several barriers to wide commercialization of these technologies such as financial, construction, operation, and technical risks. The purpose of this study is to investigate the performance features of coal-to-fuel systems based on different gasification technologies. The target products are the Fischer–Tropsch synthetic crude and synthetic natural gas. Two types of entrained-flow gasifier-based coal-to-fuel systems are simulated and their performance features are discussed. One is a single-stage water quench cooling entrained-flow gasifier, and another one is a two-stage syngas cooling entrained-flow gasifier. The conservation of energy (first law of thermodynamics) and the quality of energy (second law of thermodynamics) for the systems are both investigated. The results of exergy analysis provide insights about the potential targets for technology improvement. The features of different gasifier-based coal-to-fuel systems are discussed. The results provide information about the research and development priorities in future.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 361 ◽  
Author(s):  
Giedrė Streckienė ◽  
Vytautas Martinaitis ◽  
Juozas Bielskus

The continuous energy transformation processes in heating, ventilation, and air conditioning systems of buildings are responsible for 36% of global final energy consumption. Tighter thermal insulation requirements for buildings have significantly reduced heat transfer losses. Unfortunately, this has little effect on energy demand for ventilation. On the basis of the First and the Second Law of Thermodynamics, the concepts of entropy and exergy are applied to the analysis of ventilation air handling unit (AHU) with a heat pump, in this paper. This study aims to develop a consistent approach for this purpose, taking into account the variations of reference temperature and temperatures of working fluids. An analytical investigation on entropy generation and exergy analysis are used, when exergy is determined by calculating coenthalpies and evaluating exergy flows and their directions. The results show that each component of the AHU has its individual character of generated entropy, destroyed exergy, and exergy efficiency variation. However, the evaporator of the heat pump and fans have unabated quantities of exergy destruction. The exergy efficiency of AHU decreases from 45–55% to 12–15% when outdoor air temperature is within the range of −30 to +10 °C, respectively. This helps to determine the conditions and components of improving the exergy efficiency of the AHU at variable real-world local climate conditions. The presented methodological approach could be used in the dynamic modelling software and contribute to a wider application of the Second Law of Thermodynamics in practice.


Author(s):  
E. K. Akpinar ◽  
A Midilli ◽  
Y Bicer

This paper is concerned with thermodynamic analysis of the process of single-layer drying of apple slices by means of a cyclone-type dryer. Using the first law of thermodynamics, energy analysis was performed to estimate the ratios of energy utilization throughout the drying process. Exergy analysis was carried out to determine exergy losses during the drying process by applying the second law of thermodynamics. It was concluded that the exergy losses increased with increasing energy utilization in both trays and the drying chamber. Values of the energy utilization ratio (EUR) of the drying chamber varied in the range 0−41.64 per cent depending on the drying conditions. The most exergy losses took place on the first tray (EUR = 0−21.06 per cent) during the drying of apple slices. It is emphasized that apple slices are sufficiently dried in the range 60−80°C with 20−10 per cent relative humidity and a drying air velocity of 1.5 m/s over a 3.33−5.33 h period in spite of exergy losses of 0−1.243 kj/s (EUR = 0−34.72 per cent).


Author(s):  
Onkar Singh ◽  
R. Yadav

The thermodynamic analysis of integrated gas/steam cycle has been carried out on the basis of second law of thermodynamics. The exergy analysis provides a viable understanding of the influence of various parameters on the distribution of losses in the constituent components of the cycle. The paper also provides the insight into the influence of changing operating parameters on the performance of the waste heat recovery boiler, which in turn questions the viability of the integrated gas/steam cycle.


Author(s):  
S Ayyappan ◽  
M Selvakumar ◽  
T Ram Kumar

This paper presents energy and exergy analyses of solar drying of coconuts in a hemispherical solar tunnel drier. Coconuts were dried from an initial moisture content of about 55% (w.b.) to 7% (w.b.) in the solar tunnel drier in 60 hrs whereas the open sun drying process takes 153 hrs for reducing the moisture content to the same level. The drying experiments were conducted at a mass flow rate of 7.25 kg/s with an average air velocity of 0.1 m/s. Using the first law of thermodynamics, energy analysis was carried out to estimate the amount of energy received by the solar tunnel drier and the ratios of energy utilization. However, exergy analysis was accomplished to determine the exergy loss and exergy efficiency by applying the second law of thermodynamics. Energy utilization, energy utilization ratio, exergy inflow and exergy loss in the drier were studied and these values are found to be increased with increasing solar radiation. The exergy inflow and exergy loss in the drier varied between 0.194 kJ/s–8.18 kJ/s and 0.085 kJ/s–5.377 kJ/s respectively. The exergy efficiency of the drier varied between 23.6%–53%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Huiling Su ◽  
Qifeng Huang ◽  
Zhongdong Wang

In the context of the energy crisis and environmental deterioration, the integrated energy system (IES) based on multi-energy complementarity and cascaded utilization of energy is considered as an effective way to solve these problems. Due to the different energy forms and the various characteristics in the IES, the coupling relationships among various energy forms are complicated which enlarges the difficulty of energy efficiency evaluation of the IES. In order to flexibly analyze the energy efficiency of the IES, an operation efficiency evaluation model for the IES is established. First, energy utilization efficiency (EUE) and exergy efficiency (EXE) are proposed based on the first/second law of thermodynamics. Second, the energy efficiency models for five processes and four subsystems of the IES are formed. Lastly, an actual commercial-industrial park with integrated energy is employed to validate the proposed method.


Sign in / Sign up

Export Citation Format

Share Document