scholarly journals Effect of Rotten Butter Shock Load on Anaerobic Digestion of Chicken Manure

2021 ◽  
Vol 41 (4) ◽  
pp. 362
Author(s):  
Gaweł Sołowski ◽  
Izabela Konkol ◽  
Marwa Shalaby

Anaerobic digestion is a popular method for improving fertilizing properties, but there is no report on the effect of shock load with butter on anaerobic digestion of chicken manure. Therefore, this study aimed to investigate the anaerobic digestion of chicken manure with butter addition. The volatile suspended solid (VSS) was set at 20g VSS/L with different butter additions from 0 to 60 g VSS/L and different oxygen flow rate (OFR) from 0 to 2.5 mL/h. The results showed that ammonia ranged from 0.072 g/L to 0.082 g/L, while the volatile acids ranged from 425 mg/L to 325 mg/L. The volatile organic acid was significantly influenced by a change in OFR compared to ammonia, while a correlation between hydrogen and hydrogen sulfide was observed. The results showed that the highest hydrogen and methane production was obtained at butter addition of 30 g VSS/L with OFR 1.4 mL/h with volumes of 78 mL and 25 L respectively. In addition, hydrogen sulfide emissions induced rapid growth with increase in butter concentration.

Author(s):  
Gaweł Sołowski

In the article, were checked influences of microaeration, pH, and VSS (Volatile Suspended Solid) for sour cab-bage anaerobic digestion. Results fermentation of sour cabbage under the condition of small oxygen addition are presented in this research can be classified as dark fermentation or hydrogenotrophic anaerobic digestion. The investigations were carried out for two concentrations 5 g VSS /L and 10 g VSS /L of sour cabbage at pH 6.0. The oxygen flow rates (OFR) for 5 g VSS /L were in the range of 0.53 to 3.3 mL/h for obtaining 2% to 8% of oxygen. In cases of low pH and microaeration, ethylene production was observed at a level below 0.05% in biogas. The highest volume of hydrogen for 5 g VSS/L was obtained for flow rate 0.58 O2 mL/h, giving hydrogen concentration in biogas in the range of 0 to 20%. For VSS 5 g/L and oxygen flow rate 0.58 mL/h; 0.021 L of hydrogen is produced per gram of VSS. In this case, VSS 10 g/L and oxygen flow rate 1.4 mL/h at pH 6.0, 0.03 L of hydrogen is generated per gram. Microaeration from 0.58 mL/h to 0.87 mL/h was propitious for hydrogen production at 5 g VSS/L of sour cabbage and 1.4 mL/h for 10 g/L. Another relevant factor is the volatile suspended solid factor of sour cabbage that caused optimal hydrogen production at VSS 89.32%.


2013 ◽  
Vol 838-841 ◽  
pp. 18-22
Author(s):  
Guang Li ◽  
Xiao Xia Jiao ◽  
Jing Li ◽  
Xiang Kui Han ◽  
Lian Peng Wang

In 110-190°C for 15-75 min of excess sludge thermal hydrolysis experiment, inspected the volatile suspended solid dissolution rate, the concentration of sludge SCOD, TCOD, components of organic acids in the supernatant fluid changes,such as sewage thermal hydrolysis characteristics, analysis the effect to improve the performance of sludge anaerobic digestion. The results show that with the increase of thermal hydrolysis temperature and time, SCOD and VFA in the sludge supernatant on rising. Under the condition of 190°C,75min, SCOD and VFA reached a maximum of 6674 mg/L,2630 mg/L; Release of sludge organic dissolved solids,COD and other major completed in the first 45 min,after 45 min changed little; Thermal hydrolysis temperature was between 90~170°C,sludge anaerobic digestion performance increases with temperature,when the temperature was higher than 170°C,sludge anaerobic digestion performance began to decline.


2012 ◽  
Vol 610-613 ◽  
pp. 2000-2005
Author(s):  
Chun Yan Xu ◽  
Hong Jun Han

The uncertainty of operating parameters hinders the practical application of the biological desulfurization. To solve this problem, this study which was conducted in room temperature, pH around seven conditions, investigated the effects of the operating parameters on the hydrogen sulfide (H2S) removal performance in the biotrickling filter, including inlet H2S concentration, inlet flow rate or gas retention time, inlet volume load and circulating liquid spraying flux. The results showed that, the inlet H2S concentration should be controlled within 800mg/m3, 650mg/m3, 400mg/m3, 300mg/m3 respectively while the inlet flow rate was 150L/h, 200L/h, 250L/h, 300L/h, at those conditions, the outlet H2S concentrations were lower than 8mg/m3 and the H2S removal efficiencies were more than 98%. The optimum gas retention time was 12.37s, corresponding to the inlet flow rate of 200L/h, at this time, even if the inlet H2S concentration as high as 700mg/m3, the removal efficiency could be still more than 98%, the outlet concentration of H2S was only 13.1mg/m3. The maximum inlet volume load was 130g/(m3•h), in this condition, the outlet concentration of H2S could be controlled below 12mg/m3, the removal efficiency could above 98.4%.


2018 ◽  
Vol 6 (1) ◽  
pp. 110-118 ◽  
Author(s):  
Robert Lupitskyy ◽  
Dania Alvarez-Fonseca ◽  
Zachary D. Herde ◽  
Jagannadh Satyavolu

Sign in / Sign up

Export Citation Format

Share Document