The influence of oxygen flow rate on properties of SnO2 thin films grown epitaxially on c-sapphire by chemical vapor deposition

2015 ◽  
Vol 594 ◽  
pp. 270-276 ◽  
Author(s):  
Y.M. Lu ◽  
J. Jiang ◽  
C. Xia ◽  
B. Kramm ◽  
A. Polity ◽  
...  
2001 ◽  
Vol 688 ◽  
Author(s):  
Duck-Kyun Choi ◽  
Joong-Seo Kang ◽  
Young-Bae Kim ◽  
Duck-Hwa Hong ◽  
Hyun-Chul Kim ◽  
...  

AbstractThin film electrodes of the perovskite oxide (Ba,Sr)RuO3 (BSR) were deposited on 4 inch ptype Si wafers by metal organic chemical vapor deposition (MOCVD) for the practical (Ba,Sr)TiO3 (BST) capacitor application using a new single cocktail source. The source materials used for the MOCVD BSR process were Ba(METHD)2, Sr(METHD)2 and Ru(METHD)3 and these were dissolved in n-butyl acetate. The source-feeding rate was precisely controlled by liquid mass flow controllers (LMFC). As-deposited BSR films possessed a (110)-oriented structure, with good uniformity and adherence on bare Si wafer. The phase formation was strongly affected by the oxygen flow rate and the input source rate. As the oxygen flow rate increased, the Ru/(Ba+Sr) composition ratio in the film decreased, while the Ba/(Ba+Sr) ratio was almost independent of the oxygen flow rate. The dielectric constants of BST capacitors fabricated using these electrodes was greater than 500.


2003 ◽  
Vol 799 ◽  
Author(s):  
Peng Lu ◽  
J. H. Edgar ◽  
J. Pomeroy ◽  
M. Kuball ◽  
H. M. Meyer ◽  
...  

ABSTRACTThe parameters necessary to deposit oriented rhombohedral boron phosphide (B12P2) thin films on on-axis Si-face 6H-SiC(0001) substrates by chemical vapor deposition are reported. Ultra high purity BBr3 and PBr3 were used as reactants, with hydrogen as the carrier gas. The BBr3 to PBr3 flow rate ratio was adjusted to obtain good surface morphology of the B12P2 films. BBr3 to PBr3 ratios in the range of 1 to 1.5 produced smooth surfaces and moderate growth rates of 10μm/hr. Higher growth rates were obtained by increasing the BBr3 flow rate, but the surfaces became very rough. The c-axis of the B12P2 film was aligned with the c -axis of the substrate at temperatures between 1650°C-1700°C. The surface morphologies were investigated by SEM and the crystalline properties of the films were characterized by XRD and Raman spectroscopy.


2017 ◽  
Vol 638 ◽  
pp. 22-27 ◽  
Author(s):  
A. Heiras-Trevizo ◽  
P. Amézaga-Madrid ◽  
L. Corral-Bustamante ◽  
W. Antúnez-Flores ◽  
P. Pizá Ruiz ◽  
...  

1999 ◽  
Vol 14 (2) ◽  
pp. 487-493 ◽  
Author(s):  
Han Sang Song ◽  
Tae Song Kim ◽  
Chang Eun Kim ◽  
Hyung Jin Jung

Ferroelectric Pb(Zr, Ti)O3 (PZT) thin films were grown on Pt/Ti/SiO2/Si, RuO2/Pt/Ti/SiO2/Si, and Pt/MgO substrates at the substrate temperature of 600 °C by the metalorganic chemical vapor deposition (MOCVD) method. Pb(C11H19O2)2(Pb(DPM)2), Ti(OiC3H7)4, and Zr(OtC4H9)4 as source material and Ar and O2 as a carrier gas and oxidizing agent were selected, respectively. In order to investigate the effect of Zr and Ti component changes on the growth aspect of PZT thin films, Zr and Ti source materials were varied by controlling Zr and Ti flow rate. From the Rutherford backscattering spectroscopy (RBS) measurement, it was confirmed that the composition of the films, particularly Pb content, changed with the increasing Zr flow rate. In addition, the x-ray diffraction (XRD) spectra analysis showed the existence of a Pb-deficient pyrochlore phase as well as ZrO2 as a secondary phase. From these results, it is believed that the higher Zr partial pressure in the gas phase reduces the sticking of the Pb precursor to the substrate. The film with Pb:Zr:Ti = 1:0.42:0.58 showed a dielectric constant of 816 at 1 MHz. The spontaneous polarization, remanent polarization, and coercive field measured from the RT66A by applying 3.5 V were 44.1 μC/cm2, 24.4 μC/cm2, and 59.6 kV/cm, respectively. The fatigue analysis of PZT thin films with Pb:Zr:Ti = 1:0.42:0.58 at an applied voltage of Vp-p = 5.4 V showed 40% degradation on the basis of initial polarization value after 109 cycles.


2019 ◽  
Vol 288 ◽  
pp. 135-139 ◽  
Author(s):  
Yan Sai Tian ◽  
Ai Ming Gao ◽  
Bing Qing Zhou

Silicon-rich silicon nitride thin films were deposited on the P type (100) of silicon and Corning7059 glass by hot-wire chemical vapor deposition method using SiH4 and NH3 as reaction gas source. The effects of SiH4 flow rate on the structures and optical properties of the thin films were studied under optimizing other deposition parameters. The structures, band gap width and surface morphology of the thin films were characterized by Fourier transform infrared absorption spectroscopy (FTIR), ultraviolet-visible (UV-VIS) light transmittance spectra and scanning electron microscope (SEM), respectively. The experiment results show that, with increasing of the SiH4 flow rate, the content of N and Si atoms in the thin films increases, and the Si-N bond density increases gradually, and the optical band gap of the films shows a trend of increasing. When the silane flow rate is less than 0.9sccm, there is no Si-H bond stretching vibration absorption peak, and silicon atoms mainly bond with nitrogen atoms. As the SiH4 flow rate decreases, silicon clusters embedded in silicon nitride matrix gradually become smaller. When SiH4 flow rate is 0.4sccm, we prepared the silicon cluster nanoparticles with an average diameter of about 50nm embedded in silicon nitride thin films matrix. Therefore, properly reduction of the SiH4 flow rate is favorable for preparing the smaller silicon cluster nanoparticles in silicon rich silicon nitride thin films. The results lay the foundation for the preparation of silicon quantum dots thin film materials.


Sign in / Sign up

Export Citation Format

Share Document