scholarly journals Humic Acid Removal from Aqueous Environments by Electrocoagulation Process Using Iron Electrodes

2012 ◽  
Vol 9 (4) ◽  
pp. 2453-2461 ◽  
Author(s):  
Edris Bazrafshan ◽  
Hamed Biglari ◽  
Amir Hossein Mahvi

At present study the performance of electrocoagulation process using iron electrodes sacrificial anode has been investigated for removal of HA from artificial aqueous solution. The experiments were performed in a bipolar batch reactor with four iron electrode connected in parallel. Several working parameters, such as initial pH (3, 5, 7, and 9), electrical conductivity (50 V) and reaction time were studied in an attempt to achieve the highest removal capacity. Solutions of HA with concentration equal 20 mg L-1were prepared. To follow the progress of the treatment, samples of 10 ml were taken at 15, 30, 45, 60, and 75 min interval. Finally HA concentration was measured by UV absorbance at 254 nm (UV254) and TOC concentration was measured by TOC Analyser. The maximum efficiency of HA removal which was obtained in voltage of 50 V, reaction time of 75 min, initial concentration 20 mg L-1, conductivity 3000 µS/Cm and pH 5, is equal to 92.69%. But for natural water samples at the same optimum condition removal efficiency was low (68.8 %). It can be concluded that the electrocoagulation process has the potential to be utilized for cost-effective removal of HA from aqueous environments.

2015 ◽  
Vol 77 (32) ◽  
Author(s):  
Rabiatuladawiyah Danial ◽  
Luqman Chuah Abdullah ◽  
Mohsen Nourouzi Mobarekeh ◽  
Shafreeza Sobri ◽  
Nordayana Mohd Adnan

This study was intended to compare the performance of electrocoagulation process using aluminium and iron electrodes for glyphosate removal in aqueous solution. The effects of initial glyphosate concentration, electrocoagulation time and distance between electrodes, were discussed in detail. An electrocoagulation tank of 500mL with two metal plates electrodes, same in dimensions and metal types, was set up to perform batch mode laboratory experiment and the glyphosate in white powder was first diluted with deionized water. Production of metal cations showed an ability to neutralize negatively charged particles, which then encouraged to bind together to form aggregates of flocs composed of a combination of glyphosate and metal hydroxide. Compared with iron electrodes, aluminium electrodes were more effective for glyphosate removal, with a removal efficiency of over than 80%. This study revealed that electrocoagulation process using aluminium electrodes is reliable, especially designed for initial concentration 100 mg/L, electrocoagulation time 50 min, and distance between electrodes 6 cm. Finally, it can be concluded that electrocoagulation process using aluminium electrodes is efficient for glyphosate removal from aqueous environments.


2020 ◽  
Vol 20 (3) ◽  
pp. 536
Author(s):  
Nurulhuda Amri ◽  
Ahmad Zuhairi Abdullah ◽  
Suzylawati Ismail

This work compares commercial aluminium electrode for use in the treatment of wastewater by electrocoagulation process against waste aluminium cans electrode. The applicability of the waste aluminium cans electrode was tested for decolorization of Acid Red 18 dye as a model pollutant. The batch electrocoagulation process using both types of electrode was conducted at a current density of 25 mA/cm2, a pH of 3, an initial concentration of 100 mg/L and 25 min of reaction time. The elemental composition and surface morphology of both electrode materials and the sludge produced were analyzed using SEM-EDX to establish the correlation between the properties and characteristics of both electrode materials with their dye removal performance. The results demonstrated that waste aluminium cans performed better than commercial aluminium electrode with a removal efficiency of 100% in 25 min of reaction time. This was due to the higher Al dissolution of waste aluminium cans electrode that contributed to the larger amount of Al3+ released into the solution to consequently form more flocs to remove the dye molecules. In conclusion, the proposed waste aluminium electrode was considered as efficient and cost-effective and had the potential to replace the conventional ones in treating colored industrial wastewater using electrocoagulation process.


2019 ◽  
Vol 2 (2) ◽  
pp. 21
Author(s):  
Lindawati Lindawati

Reduction of food rations and shortages is one of the impacts of the increasing human population. Food sector industries then try to cope with the fast growing number of customers. Agribusiness sector gains its popularity in these recent years, including pig farm. The increase trend of animal farming industry is likely to bring increasing pollution problem unless effective treatment methods are used. The main problems related to the pig farm include odor nuisance and pig manure disposal. The existing land application of piggery wastewater is the traditional way to discharge the wastewater. This may yield in land and water contamination, due to the accumulation of unused nutrients by crop plant. A case study of a large commercial pig farm from Australia is proposed to apply in smaller scale in Indonesia. Operational strategies for the small-scale SBR (Sequencing Batch Reactor) treating piggery effluent were developed based on lab-scale experiments. Due to SBR characteristics, which are money-saving and space-saving, it is very suitable to be applied in urban area. An economic evaluation was made of various process options. The cost estimation showed that SBR is a cost effective process, allowing operational batches to be adjusted to reduce unnecessary aeration cost. A reduction in the aeration cost was achieved by shortening the batch time from 24-h to 8-h. A comparison of three different SBR options showed that smaller size reactors could be more flexible and cost effective when compared with the larger ones.


2012 ◽  
Vol 27 (4) ◽  
pp. 707-713 ◽  
Author(s):  
Jukka Pekka lsoaho ◽  
Suvi Tarkkanen ◽  
Raimo Alen ◽  
Juha Fiskari

Abstract Softwood-based kraft mill bleaching effluents from the initial bleaching stages D0 and E1 (the bleaching sequence being D0E 1D 1 E2D2) were treated by the oxidative Fenton method (H20rFeS04) to decompose organic pollutants contammg adsorbable organic halogens (AOX). Experiments designed using the Taguchi method were applied to predict the process conditions that would result in a cost-effective and adequate removal of AOX. In addition to the composition and concentration of the reagents (H202 and Fe2+), the main process parameters selected were temperature and reaction time, while pH was adj usted to an approximate value of 4 (the volumetric ratio of the mixed effluents D0:E 1 was 3 :2). The results indicated that an AOX removal of about 70% for this mixture ( corresponding to about 50% for the mill) was achieved when the eftluent samples were treated for 60 min at 70°C with H202 and Fe2+ at a concentration of 1 600 mg/1 and 28 mg/1, respectively.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 928
Author(s):  
Micah Flor V. Montefalcon ◽  
Meliton R. Chiong ◽  
Augustus C. Resurreccion ◽  
Sergi Garcia-Segura ◽  
Joey D. Ocon

Arsenic (As) is a naturally occurring element in the environment that poses significant risks to human health. Several treatment technologies have been successfully used in the treatment of As-contaminated waters. However, limited literature has explored advanced electrocoagulation (EC) processes for As removal. The present study evaluates the As removal performance of electrocoagulation, electrochemical peroxidation (ECP), and photo-assisted electrochemical peroxidation (PECP) technologies at circumneutral pH using electroactive iron electrodes. The influence of As speciation and the role of oxidants in As removal were investigated. We have identified the ECP process to be a promising alternative for the conventional EC with around 4-fold increase in arsenic removal capacity at a competitive cost of 0.0060 $/m3. Results also indicated that the rate of As(III) oxidation at the outset of electrochemical treatment dictates the extent of As removal. Both ECP and PECP processes reached greater than 96% As(III) conversion at 1 C/L and achieved 86% and 96% As removal at 5 C/L, respectively. Finally, the mechanism of As(III) oxidation was evaluated, and results showed that Fe(IV) is the intermediate oxidant generated in advanced EC processes, and the contribution of •OH brought by UV irradiation is insignificant.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
M. Behbahani ◽  
M.R. Alavi Moghaddam ◽  
M. Arami

The aim of this study is to examine the effect of operational parameters on fluoride removal using electrocoagulation method. For this purpose, various operational parameters including initial pH, initial fluoride concentration, applied current, reaction time, electrode connection mode, anode material, electrolyte salt, electrolyte concentration, number of electrodes and interelectrode distance were investigated. The highest defluoridation efficiency achieved at initial pH 6. In the case of initial fluoride concentration, maximum removal efficiency (98.5%) obtained at concentration of 25mg/l. The increase of applied current and reaction time improved defluoridation efficiency up to 99%. The difference of fluoride removal efficiencies between monopolar and bipolar series and monopolar parallel were significant, especially at reaction time of 5 min. When aluminum used as anode material, higher removal efficiency (98.5%) achieved compared to that of iron anode (67.7%). The best electrolyte salt was NaCl with the maximum defluoridation efficiency of 98.5% compared to KNO3 and Na2SO4. The increase of NaCl had no effect on defluoridation efficiency. Number of electrodes had little effect on the amounts of Al3+ ions released in the solution and as a result defluoridation efficiency. Almost the same fluoride removal efficiency obtained for different interelectrode distances.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Edris Bazrafshan ◽  
Hossein Moein ◽  
Ferdos Kord Mostafapour ◽  
Shima Nakhaie

Dairy industry wastewater is characterized by high biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and other pollution load. The purpose of this study was to investigate the effects of the operating parameters such as applied voltage, number of electrodes, and reaction time on a real dairy wastewater in the electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as electrolytes. It has been shown that the removal efficiency of COD, BOD5, and TSS increased with increasing the applied voltage and the reaction time. The results indicate that electrocoagulation is efficient and able to achieve 98.84% COD removal, 97.95% BOD5removal, 97.75% TSS removal, and >99.9% bacterial indicators at 60 V during 60 min. The experiments demonstrated the effectiveness of electrocoagulation techniques for the treatment of dairy wastewaters. Finally, the results demonstrated the technical feasibility of electrocoagulation process using aluminum electrodes as a reliable technique for removal of pollutants from dairy wastewaters.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1461
Author(s):  
Roberto Braglia ◽  
Lorenza Rugnini ◽  
Sara Malizia ◽  
Francesco Scuderi ◽  
Enrico Luigi Redi ◽  
...  

Increasing levels of freshwater contaminants, mainly due to anthropogenic activities, have resulted in a great deal of interest in finding new eco-friendly, cost-effective and efficient methods for remediating polluted waters. The aim of this work was to assess the feasibility of using a green microalga Desmodesmus sp., a cyanobacterium Nostoc sp. and a hemicryptophyte Ampelodesmos mauritanicus to bioremediate a water polluted with an excess of nutrients (nitrogen and phosphorus) and heavy metals (copper and nickel). We immediately determined that Nostoc sp. was sensitive to metal toxicity, and thus Desmodesmus sp. was chosen for sequential tests with A. mauritanicus. First, A. mauritanicus plants were grown in the ‘polluted’ culture medium for seven days and were, then, substituted by Desmodesmus sp. for a further seven days (14 days in total). Heavy metals were shown to negatively affect both the growth rates and nutrient removal capacity. The sequential approach resulted in high metal removal rates in the single metal solutions up to 74% for Cu and 85% for Ni, while, in the bi-metal solutions, the removal rates were lower and showed a bias for Cu uptake. Single species controls showed better outcomes; however, further studies are necessary to investigate the behavior of new species.


Author(s):  
Vijay A. Juwar ◽  
Ajit P. Rathod

Abstract The present study deals with the treatment of complex waste (WW) treated for removal of chemical oxygen demand (COD) of the food industry by a sono-Fenton process using a batch reactor. The response surface methodology (RSM) was employed to investigate the five independent variables, such as reaction time, the molar ratio of H2O2/Fe2+, volume ratio of H2O2/WW, pH of waste, and ultrasonic density on COD removal. The experimental data was optimized. The optimization yields the conditions: Reaction time of 24 min, HP:Fe molar ratio of 2.8, HP:WW volume ratio of 1.9 ml/L, pH of 3.6 and an ultrasonic density of 1.8 W/L. The predicted value of COD was 91% and the experimental result was 90%. The composite desirability value (D) of the predicted percent of COD removal at the optimized level of variables was close to one (D = 0.991).


Author(s):  
Fábio Orssatto ◽  
Maria Hermínia Ferreira Tavares ◽  
Flávia Manente da Silva ◽  
Eduardo Eyng ◽  
Leandro Fleck

This work evaluated the removal of total Kjeldahl nitrogen (TKN) and total phosphorus (P) through electrocoagulation and used aluminum electrodes to optimize the potential differential (pd) and hydraulic retention time (HRT) variables in a batch reactor. The experimental design used was Rotatable Central Composite Design (RCCD). The application of the electrocoagulation in the treatment of effluents from pig slaughterhouses and packing plants proved to be efficient in relation to the removal of TKN and total phosphorus, obtaining maximum efficiency equal to 67.15% and 99%, respectively. The maximum TKN removal value was found in Test 12, where treatment conditions were 30 minutes for HRT and 20 volts for pd, which corresponds to 0.86 A of electric current and a current density of 17.2 mA cm-2. For P, the only test that removed below 99% was the first. Through statistical analyses, it was only possible to obtain a mathematical model for TKN removal. While the response surface graph did not present a defined range of the best conditions for the independent variables, it was possible to observe the tendency for better removal, a wide range of pd and values over 30 minutes for retention time.


Sign in / Sign up

Export Citation Format

Share Document