scholarly journals Synthesis, Structural and Optical Characterization of Titanium Dioxide Doped by (Ce, Yb) Dedicated to Photonic Conversion

2019 ◽  
Vol 20 (1) ◽  
pp. 175
Author(s):  
Zobair El Afia ◽  
Mohamed Youssef Messous ◽  
Mohamed Cherkaoui ◽  
Mounia Tahri

The synthesis of TiO2 co-doped by (Ce, Yb) rare earth couple has been realized. This couple of rare earth can convert a high-energy photon to two low energy photons to enhance the energy efficiency of silicon solar cells. The undoped, 2% Ce doped- and (2% Ce, 4% Yb) Codoped- Titanium oxide were prepared by the co-precipitation method. The Infrared spectroscopy FTIR-ATR analysis indicates a continuous visible absorption in the 750–400 cm–1 region, confirming the formation of a titanium-oxygen bond. The X-Ray Diffraction characterization showed the dominance of the rutile crystalline phase with the presence of anatase one and the calculated crystallite size is between 7 to 13 nm. The X-Ray Fluorescence confirms the insertion of the dopants while the Inductively Coupled Plasma Mass Spectrometry ICP-MS showed the ratio 2 between Ce and Yb concentration. The thermogravimetric analysis indicated that Ce/Yb doped titanium was thermally stable. The absorption in the UV-visible (200 and 1000 nm) has been improved proportionally with the dopants.

2012 ◽  
Vol 9 (4) ◽  
pp. 1788-1795 ◽  
Author(s):  
Olushola S. Ayanda ◽  
Olalekan S. Fatoki ◽  
Folahan A. Adekola ◽  
Bhekumusa J. Ximba

In this study, fly ash was obtained from Matla power station and the physicochemical properties investigated. The fly ash was characterized by x-ray fluorescence, x-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectrometry. Surface area, particle size, ash and carbon contents, pH, and point of zero charge were also measured. The results showed that the fly ash is alkaline and consists mainly of mullite (Al6Si2O13) and quartz (SiO2). Highly toxic metals As, Sb, Cd, Cr, and Pb as well as metals that are essential to health in trace amounts were also present. The storage and disposal of coal fly ash can thus lead to the release of leached metals into soils, surface and ground waters, find way into the ecological systems and then cause harmful effect to man and its environments.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 402 ◽  
Author(s):  
Qin ◽  
Cao ◽  
Wei ◽  
Wang ◽  
Liu

This paper reports the mineral compositions and geochemical characteristics of the No. 5-2 high-sulfur coal (Taiyuan Formation) from Dongpo Mine, Weibei Coalfield, Shaanxi, Northern China via transmitted and reflected light microscopy, scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (SEM-EDS), X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray fluorescence spectrometry (XRF). We also confirmed the input of intermediate-felsic volcanic ashes into the Taiyuan Formation coals in Dongpo Mine, Weibei Coalfield. The results show that Dongpo coals are enriched in Ga and Li compared to the average values for world hard coals, and they are depleted in Al2O3 compared to Chinese coals. The coal low temperature ash contains kaolinite, illite, quartz, calcite, pyrite, and to a lesser extent, chlorite, plagioclase, dolomite, ankerite, and apatite. The concentration anomalies of Ga and Li in No. 5-2 high-sulfur coal were not caused by the Benxi Formation Bauxite, but by the influence of multiple geological factors. The Middle Proterozoic moyite from the Yinshan Oldland led to the slightly higher Ga and Li contents of the No. 5-2 coal than those in world hard coals. Input of synchronization volcanic ash, injection of hydrothermal fluids during the syngenetic or early diagenetic stages and influence of seawater further contributed to the Ga and Li enrichment of the No. 5-2 coal.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 250 ◽  
Author(s):  
Francesco Baldassarre ◽  
Angela Altomare ◽  
Nicola Corriero ◽  
Ernesto Mesto ◽  
Maria Lacalamita ◽  
...  

Europium-doped hydroxyapatite Ca10(PO4)6(OH)2 (3% mol) powders were synthesized by an optimized chemical precipitation method at 25 °C, followed by drying at 120 °C and calcination at 450 °C and 900 °C. The obtained nanosized crystallite samples were investigated by means of a combination of inductively coupled plasma (ICP) spectroscopy, powder X-ray diffraction (PXRD), Fourier Transform Infrared (FTIR), Raman and photoluminescence (PL) spectroscopies. The Rietveld refinement in the hexagonal P63/m space group showed europium ordered at the Ca2 site at high temperature (900 °C), and at the Ca1 site for lower temperatures (120 °C and 450 °C). FTIR and Raman spectra showed slight band shifts and minor modifications of the (PO4) bands with increasing annealing temperature. PL spectra and decay curves revealed significant luminescence emission for the phase obtained at 900 °C and highlighted the migration of Eu from the Ca1 to Ca2 site as a result of increasing calcinating temperature.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2695 ◽  
Author(s):  
Mhadmhan ◽  
Marquez-Medina ◽  
Romero ◽  
Reubroycharoen ◽  
Luque

We have successfully incorporated iron species into mesoporous aluminosilicates (AlSBA15) using a simple mechanochemical milling method. The catalysts were characterized by nitrogen physisorption, inductively coupled plasma mass spectrometry (ICP-MS), pyridine (PY) and 2,6-dimethylpyridine (DMPY) pulse chromatography titration, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). The catalysts were tested in the N-alkylation reaction of aniline with benzyl alcohol for imine production. According to the results, the iron sources, acidity of catalyst and reaction conditions were important factors influencing the reaction. The catalyst showed excellent catalytic performance, achieving 97% of aniline conversion and 96% of imine selectivity under optimized conditions.


2019 ◽  
Vol 14 (3) ◽  
pp. 198-212
Author(s):  
Ferian Anggara ◽  
Mutiara Cikasimi ◽  
Basuki Rahmat ◽  
Sigit Arso Wibisono ◽  
Rita Susilawati

Batubara telah menjadi salah satu sumber alternatif unsur-unsur tanah jarang (UTJ) seiring dengan meningkatnya permintaan terhadap kebutuhan unsur-unsur tersebut. Kondisi geologis spesifik menyebabkan pengayaan konsentrasi UTJ pada batubara. Keterdapatan lapisan tipis material vulkanik (tonstein) pada Lapangan Batubara Muara Tiga Besar Utara, Formasi Muara Enim, Cekungan Sumatera Selatan menjadi salah satu indikasi terdapatnya pengayaan UTJ. Penelitian dilakukan menggunakan metode petrografi sayatan poles, analisis-analisis X-Ray Diffraction (XRD), proksimat, dan geokimia; Inductively Coupled Plasma-Mass/Atomic Emission Spectroscopy (ICP-MS/AES). Analisis geokimia menunjukkan pola distribusi UTJ didominasi oleh tipe UTJ Berat (Heavy Rare Earth Elements, HREE). Plot diagram nilai Coutl dan REOash menunjukkan prospek pengayaan UTJ termasuk ke dalam daerah prospek. Pola distribusi UTJ dan anomali redox sensitive dan redox non-sensitive menunjukkan tipe genetik pengayaan UTJ adalah tufaan. Pengayaan UTJ terjadi oleh proses pencucian alkaline tonstein yang terendapkan pada fase penggambutan dalam pembentukan batubara.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 766
Author(s):  
Uxue Sanchez-Garmendia ◽  
Javier G. Iñañez ◽  
Gorka Arana

Ancient ceramics recovered after a long burial period have probably undergone several alterations and contaminations, introducing a chemical variability, affecting the ceramic’s natural variability. That is, the chemical and the mineralogical compositions of the ceramic pastes after their deposition will not be the same as they originally were. Therefore, it is known that the alteration and contamination processes, and the discrimination of some elements, should be considered when studying the ceramics to avoid incorrect interpretations about their provenance, technology and the use of the artefact, as well as its proper preservation. In the present work, the authors performed an experimental approach in order to study the alterations and contaminations that occurred in 60 ceramic cylinders buried in two different underwater environments. Once the pieces were taken out from the water environments, they were characterized by a multi-analytical approach. For this purpose, inductively coupled plasma mass spectrometry (ICP-MS), X-ray diffraction (XRD), scanning electron microscopy–energy dispersive spectrometry (SEM–EDS) and Raman spectroscopy were used. Newly formed minerals of different forms have been identified, with different crystallization grades. Some examples are the needles, flakes, sponges and long and short prisms composed of several elements such as Ca, F, S and O.


2020 ◽  
Vol 11 (1) ◽  
pp. 8034-8042

The incorporation of magnesium (Mg) in tricalcium phosphate (TCP) was prepared through a precipitation method followed by calcination at 850 °C in air. Calcium hydroxide, (Ca(OH)2), phosphoric acid, (H3PO4), and magnesium chloride (MgCl2.6H2O) with a Ca/P ratio of 1.5, were mixed as the precursor materials. The concentration of added Mg was varied with respect to calcium (Ca) precursor molarity as such Mg/(Ca +Mg) molar ratio was 0.05, 0.10, and 0.15, while the (Ca+Mg)/P ratio was maintained at 1.50 throughout the experiment. The influence of Mg-doped TCP on phase composition, chemical structure, and a functional group at different weight percentages were accomplished through X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES) and Fourier Transform Infrared Spectroscopy (FTIR) analyses. Based in the results of this research, the presence of magnesium led to the formation of Mg-doped calcium-deficient apatite (MgCDA) at 80°C and Mg-doped β-TCP at 850°C; the incorporation of Mg into the TCP phase causing an expansion of the lattice and increase in the lattice parameter. This result could be considered rather unusual.


2021 ◽  
Vol 947 (1) ◽  
pp. 012026
Author(s):  
Trung Dang-Bao ◽  
Hoa-Hung Lam ◽  
Thi-Hoai-Linh Dang

Abstract In the present work, Ce-Ti and Ce-Ti/Fe3O4 hybrid oxides were prepared by co-precipitation method and then characterized by X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and scanning electron microscope (SEM) techniques. The nano-adsorbents were applied to remove fluoride (with the concentration range of 10–30 mg L−1) from aqueous solution, reaching the adsorption equilibrium within 30–60 minutes. Practically, the fluoride removal onto both nanomaterials was efficient at the neutral pH (pH 5–7) and obeyed the Langmuir adsorption isotherm with the maximum adsorption capacities of 22.78 mg g–1 (Ce-Ti) and 20.28 mg g–1 (Ce-Ti/Fe3O4) at room temperature.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1006 ◽  
Author(s):  
Krzysztof Kupczak ◽  
Rafał Warchulski ◽  
Mateusz Dulski ◽  
Dorota Środek

Slags from the historic metallurgy of Zn-Pb ores are known for unique chemical and phase compositions. The oxides, silicates, aluminosilicates, and amorphous phases present therein often contain in the structure elements that are rare in natural conditions, such as Zn, Pb, As. The study focuses on processes occurring on the contact of the melted batch and the refractory materials that build the furnace, which lead to the formation of these phases. To describe them, chemical (X-ray fluorescence (XRF), inductively coupled plasma mass spectrometry (ICP-MS)) and petrological ((X-ray diffraction (XRD), electron probe micro-analyses (EPMA), Raman spectroscopy) analyses were performed on refractory material, slag, and contact of both. Two main types of reactions have been distinguished: gas/fluid- refractories and liquid- refractories. The first of them enrich the refractories with elements that migrate with the gas (Pb, K, Na, As, Zn) and transport the components building it (Fe, Mg, Ca) inward. Reactions between melted batch and refractory materials through gravitational differentiation and the melting of refractories lead to the formation of an aluminosilicate liquid with a high content of heavy elements. Cooling of this melt causes crystallization of minerals characteristic for slag, but with a modified composition, such as Fe-rich pyroxenes, Pb-rich K-feldspar, or PbO-As2O3-SiO2 glass.


2011 ◽  
Vol 239-242 ◽  
pp. 2488-2491
Author(s):  
Hui Juan Ren ◽  
De Hui Sun ◽  
Zhen Feng Cui ◽  
Guang Yan Hong

The europium(III)-benzoic acid(HL)-1,10-phenanthroline(phen) complex was synthesized in the ethanol-H2O system by a precipitation method. The morphology of the minicrystal complex with diameters of ca. 1.0 µm is characterized by scanning electron microscopy (SEM). Elemental analysis and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) are used to determine the chemical composition of the complex. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) are used to examine the structure of the complex. The results show that the complex is a new kind of crystalline complex and the composition of the complex is speculated to be EuL3(phen). The thermogravimetric curve (TGA) analysis indicates that the complex is stable below 232 °C in air. The photoluminescence analyses (PLA) exhibit that the complex emits the characteristic red fluorescence of Eu (III) ions at 613nm under ultraviolet light excitation.


Sign in / Sign up

Export Citation Format

Share Document