scholarly journals Influence of Cobalt Substitution in LaMnO3 on Catalytic Propylene Oxidation

2021 ◽  
Vol 21 (5) ◽  
pp. 1244
Author(s):  
Teotone Inas Mariano Vaz ◽  
Sridhar Maruti Gurav ◽  
Arun Vithal Salker

Perovskite-type structures LaBO3 with the compositions of LaMn1-xCoxO3 (x = 0.0, 0.3, 0.5, 0.7, and 1.0) were synthesized at 800 °C by a modified co-precipitation precursor technique for total oxidation of propylene, as a model test of the hydrocarbon oxidation reaction. Details concerning the evolution of the crystal structure, morphology, and crystallite size were performed by X-ray diffraction (XRD), Thermo Gravimetry Analysis (TGA)/Differential Scanning Calorimetry (DSC), Fourier Transform Infra-Red (FTIR), Atomic Absorption Spectroscopy (AAS), Scanning Electron Microscopy (SEM), and Electron Spin Resonance (ESR) techniques. All compositions were identified to be single-phase and are indexed to rhombohedral structures. TG/DSC technique evidenced a temperature of 330 °C needed for the precursor as the start point and 800 °C completion for perovskite phase formation. Slight distortion in XRD diffraction peaks was observed on substituting manganese with cobalt in B-site, and new peaks emerged. An attempt has been made to understand the effect of the B-site substitution of Co3+ ions in the lattice of LaMnO3 and their influence on catalytic total propylene oxidation efficiency. These compounds show a considerable increase in the activity of propylene oxidation to carbon dioxide and water and could be explored for hydrocarbon pollution control.

2021 ◽  
Vol 13 (3) ◽  
pp. 961-969
Author(s):  
T. Vaz ◽  
S. M. Gurav ◽  
A. V. Salker

Perovskite-type oxides with transition elements offer promising potential as catalysts in total oxidation reactions. The present work reports the synthesis of crystalline lanthanum nickelates and cobaltates and their intermediate nanomaterials compositions LaNi1-XCoXO3 (x = 0.3, 0.5, and 0.7) at 800 ºC by co-precipitation precursor technique for structural, morphological, and total propylene oxidation catalytic activity. The evolution of the crystal structure and formation of the perovskite phase were analyzed by X-ray diffraction, Thermo Gravimetry Analysis (TGA) / Differential Scanning Calorimetry (DSC), Fourier Transformed Infra-Red (FTIR), Atomic Absorption Spectroscopy (AAS), Scanning Electron Microscopy (SEM), Brunauer–Emmett–Teller (BET), Electron Spin Resonance (ESR) techniques. The terminal compounds LaNiO3, LaCoO3, and their intermediates compositions were identified to be single-phase and are indexed to rhombohedral structures. The bonding characteristics were studied by FTIR spectroscopy. On substitution of Ni with Co in B-site, the slight distortion in XRD diffraction peaks were observed. These compounds show a considerable increase in the activity of propylene oxidation to carbon dioxide. This study aims at understanding the effect of B– site substitution in the lattice of LaNiO3 and their influence on catalytic propylene oxidation efficiency.


2010 ◽  
Vol 428-429 ◽  
pp. 126-131
Author(s):  
Wei Zhong Lu ◽  
Chun Wei ◽  
Qui Shan Gao

Polymethylene bis(p-hydroxybenzoates) were prepared from methyl p-hydroxybenzoate and different diols by melted transesterification reaction. Three liquid crystalline polyesters were synthesized from terephthaloyl dichloride and polymethylene bis(p-hydroxybenzoates). Its structure, morphology and properties were characterized by Ubbelohde viscometer, Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimetry (DSC), polarized optical microscopy (POM) with a hot stage, and wide-angle X-ray diffraction (WAXD). Results indicated that the intrinsic viscosities were between 0.088 and 0.210 dL/g. Optical microscopy showed that the TLCP has a highly threaded liquid crystalline texture and a high birefringent schlieren texture character of nematic phase and has wider mesophase temperature ranges for all polyesters. DSC analysis were found that the melting point (Tm), isotropic temperature (Ti) of TLCPs decreased and the temperature range of the liquid crystalline phase became wider with increased number of methylene spacers in the polyester. The WAXD results showed that TLCPs owned two strong diffraction peaks at 2θ near 19° and 23°.


2013 ◽  
Vol 787 ◽  
pp. 58-64 ◽  
Author(s):  
Xiang Feng Li ◽  
Zhao Zhang ◽  
Fang Liu ◽  
Shu Ping Zheng

The LiFePO4/C composites with different morphology are synthesized by a novel glucose assisted hydrothermal method at various glucose concentrations (from 0 to 0.25mol/L) and the insoluble lithium source Li2CO3, (NH4)2Fe (SO4)2·6H2O and (NH4)2HPO4(n (Li):n (Fe):n (P)=1:1:1) are used as raw materials. The structure, morphology, thermal performance and electrochemical properties of the synthesized composites are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetry/differential scanning calorimetry (TG-DSC), galvanostatic charge/discharge tests and cyclic voltammetry (CV). The results show that the LiFePO4/C synthesized with 0.125mol/L glucose has the relatively small particles size (0.1~0.5μm) and the well spherical morphology. The optimal sample exhibits a high discharge capacity of 160.0mAh/g at the first cycle and exhibits a good reversibility and stability in CV tests.


2015 ◽  
Vol 1112 ◽  
pp. 489-492
Author(s):  
Ali Mufid ◽  
M. Zainuri

This research aims to form particles of hematite (α-Fe2O3) with a basis of mineral iron ore Fe3O4 from Tanah Laut. Magnetite Fe3O4 was synthesized using co-precipitation method. Further characterization using X-ray fluorescence (XRF) to obtain the percentage of the elements, obtained an iron content of 98.51%. Then characterized using thermo-gravimetric analysis and differential scanning calorimetry (TGA-DSC) to determine the calcination temperature, that at a temperature of 445 °C mass decreased by 0.369% due to increase in temperature. Further Characterization of X-ray diffraction (XRD) to determine the phases formed at the calcination temperature variation of 400 °C, 445 °C, 500 °C and 600 °C with a holding time of 5 hours to form a single phase α-Fe2O3 hematite. Testing with a particle size analyzer (PSA) to determine the particle size distribution, where test results indicate that the α-Fe2O3 phase of each having a particle size of 269.7 nm, 332.2 nm, 357.9 nm, 412.2 nm. The best quantity is shown at a temperature of 500 °C to form the hematite phase. This result is used as the calcination procedure to obtain a source of Fe ions in the manufacture of Lithium Ferro Phosphate.


2010 ◽  
Vol 24 (01n02) ◽  
pp. 128-135 ◽  
Author(s):  
YING LI ◽  
CHI MUN CHEAH ◽  
HENGKY CHANG ◽  
LEONARD LOH ◽  
ADELINE KUM

A variety of bioactive composites have been invested over the last two decades as substitute materials for diseased or damaged tissues in the human body. In this paper, bioactive composites were prepared using polycaprolactone ( PCL ) and hydroxyapatite ( HA ). The influence of micro-sized and nano-sized HA on composite properties was investigated. The nano- HA was prepared by wet chemical co-precipitation reaction method. Studies of biocomposite specimen morphology were performed by Field-emission scanning electron microscopy (SEM). XRD (X-Ray Diffraction) and DSC (Differential scanning calorimetry) were used to assess the crystal structure of HA and thermal properties of the composites, respectively. The synthesized nano- HA is found to be of high purity HA structure. The relationship between composition, structure and properties was studied. Different methods to prepare uniform composites were tried, and the outcome of this work suggests that by proper manipulation of biodegradable polymers and bioactive ceramics through material design, bioactive composites with controlled properties might be achievable.


2013 ◽  
Vol 652-654 ◽  
pp. 576-580 ◽  
Author(s):  
Mya Theingi ◽  
Ji Ma ◽  
Hui Zhang ◽  
Xiang Gao ◽  
Jian Hong Yi ◽  
...  

Manganite perovskite La1-xCaxMnO3(x=0.33, 0.5 and 0.9) have been prepared by chemical co-precipitation method. Ammonium carbonate was used to coprecipitate lanthanum, calcium and manganese ions as carbonates under basic condition. This precursor on calcining at 900°C yields La-Ca-Mn-O perovskite phase. Follow by sintering at 1200°C after the powders were pressed into pellets gave La1-xCaxMnO3(LCMO) polycrystalline ceramics. The crystal phases of the resulting powders and ceramics were examined by X-ray diffraction (XRD) technique. The morphology of the powders was observed by scanning electron microscopy (SEM) and electrical transport properties of ceramics were measured by conventional four-point probe technique.


2004 ◽  
Vol 19 (12) ◽  
pp. 3586-3591 ◽  
Author(s):  
Jiyang Chen ◽  
Ying Shi ◽  
Jianlin Shi

Nano-sized (Y,Gd)2O3:Eu powders were synthesized by a novel co-precipitation processing in which a mixture of ammonium hydroxide and ammonium hydrogen carbonate was adopted as a complex precipitant. Evolution behaviors of precursors during calcinations were studied by means of thermogravimetry-differential scanning calorimetry-mass spectrum, Fourier transform infrared, x-ray diffraction, scanning electron microscopy, and transmission electron microscopy in detail. Nano-sized (Y,Gd)2O3:Eu powder as prepared possessed a primary grain size of about 30 nm and specific surface area of 38 m2/g after being calcined at 850 °C for 2 h, showing much finer grains and less agglomeration. The as prepared nanopowder shows intense luminescence at 611nm under x-ray or ultraviolet excitation. Transparent (Y,Gd)2O3:Eu ceramics can also be fabricated using this high sinterable nanopowder.


2018 ◽  
Vol 51 (6) ◽  
pp. 562-579 ◽  
Author(s):  
K Belkouicem ◽  
A Benarab ◽  
R Krache ◽  
R Benavente ◽  
E Pérez ◽  
...  

The influence of two thermal treatments on the structure, morphology, and ultimate properties exhibited by isotactic polypropylene (iPP), synthesized by conventional Ziegler–Natta iPP (Z-iPP) or metallocene iPP (m-iPP) catalysts, has been investigated in the present work. Novelty of this research consisted in the incorporation of a β nucleating agent in two different contents to the m-iPP. Results attained are compared with those found in the Z-iPP and important differences are observed. Differential scanning calorimetry and X-ray diffraction experiments revealed that coexistence of different crystalline lattices took place depending on the type of iPP: β and α forms were found in the β nucleated Z-iPP specimens, whereas α, β, and γ polymorphs could be developed in the m-iPP with nucleating agent. On the other hand, the iPP glass transition temperature ( Tg) did not exhibit a significant change because of the addition of β nucleant, as deduced from Dynamic Mechanical Thermal Analysis (DMTA) analysis. Moreover, the size and shape of the iPP spherulites was totally changed by the presence of the β agent. This nucleant promoted the formation of smaller spherulites in a greater amount, as demonstrated by optical microscopy. Concerning the mechanical parameters, microhardness, MH, and Young modulus, E, values were in the fast crystallized samples lower than those presented by their slowly cooled counterparts. A good balance in properties was seen for the slowly crystallized m-iPP that incorporated a 5 wt% content in β nucleating agent, this fact being ascribed to the coexistence of the three α, β, and γ polymorphs.


2014 ◽  
Vol 989-994 ◽  
pp. 391-394
Author(s):  
Jian Li ◽  
Li Min Dong ◽  
Qin Li ◽  
Zhi Dong Han

LED as the fourth generation light source has been extensively studied. In order to get a high-performance White Light Emitting Diode (WLED) green phosphor, YPO4:Ce3+,Tb3+ was prepared by co-precipitation. It was excited at 380nm. The structure, morphology, fluorescence property and colorimetry of the phosphors were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectrophotometer. Final results show the optimal concentration ratio are 1:0.05:0.01. The crystal grain of luminescent material is 200 nm. When the bath temperature is 80°C and calcined at 1000°C for 3h, the luminescence performance of the luminescent material is excellent.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 998 ◽  
Author(s):  
Laura Catenacci ◽  
Milena Sorrenti ◽  
Maria Cristina Bonferoni ◽  
Lee Hunt ◽  
Mino R. Caira

The aim of the study was to determine the feasibility of complexation between the antioxidant trans-resveratrol (RSV) and underivatized cyclodextrins (CDs) using a variety of preparative methods, including physical mixing, kneading, microwave irradiation, co-evaporation, and co-precipitation techniques. Products were characterized using differential scanning calorimetry (DSC), simultaneous thermogravimetric/DSC analysis (TGA/DSC), Fourier transform infrared (FT-IR) spectroscopy, and powder X-ray diffraction (PXRD). With α-CD and RSV, sample amorphization was revealed by PXRD and FT-IR, but no definitive inclusion complexation was evident. Similar results were obtained in attempts to complex RSV with β-CD. However, complex formation between γ-CD and RSV was evident from observation of an endo-/exothermic effect appearing in the DSC trace of the product from kneading and was further corroborated by FT-IR and PXRD methods. The latter technique indicated complexation unequivocally as the diffraction peak profile for the product matched that for known isostructural γ-CD complexes. Single crystal X-ray analysis followed, confirming the predicted complex between γ-CD and RSV. A combination of 1H NMR and TGA data yielded the complex formula (γ-CD)3·(RSV)4·(H2O)62. However, severe disorder of the RSV molecules prevented their modeling. In contrast, our previous studies of the inclusion of RSV in methylated CDs yielded crystals with only minor guest disorder.


Sign in / Sign up

Export Citation Format

Share Document