scholarly journals ADSORPTION OF PHENOL POLLUTANTS FROM AQUEOUS SOLUTION USING Ca-BENTONITE/CHITOSAN COMPOSITE

2015 ◽  
Vol 22 (2) ◽  
pp. 233 ◽  
Author(s):  
Poedji Loekitowati Hariani ◽  
Fatma Fatma ◽  
Fahma Riyanti ◽  
Hesti Ratnasari

Phenolic compounds areorganic pollutants that are toxic and carcinogenic.The presence of phenol in the environmentcan be adverse to humanand the environmentalsystem. One methodthat iseffective toreduce thephenolisadsorption. In this study, the adsorption of phenol in aqueous solution using Ca-bentonite/chitosan composite was investigated. Chitosan is the deacetylation product of chitin from shrimp waste. Characterization of Ca-bentonite/chitosan composite was done by using Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy-Energy Dispersive X Ray Spectroscopy (SEM-EDX). Batch adsorption studies were performed to evaluate the effects of some parameters such as initial concentration of phenol, composite weight, pH and contact time. The results showed that FTIR spectra of Ca-bentonite/chitosan composite presented the characteristic of peak of Ca-bentonite and chitosan that confirmed the successful synthesis of composite. The SEM-EDX characterizationresultsshowedCa-bentonite surfacecoverage by chitosanand the presence ofcarbonandnitrogenelementsinCa-bentonite/chitosancompositeindicated that chitosan had bonded with bentonite. The optimum condition of adsorption of Ca-bentonite/chitosan to phenol was obtained at 125 mg.L-1 of concentration in which the weight of composite was 1.0 g, the pH of solution was 7, the contact time was 30 minutes, and the capacity of adsorption was 12.496 mg.g-1.

2013 ◽  
Vol 203-204 ◽  
pp. 212-215 ◽  
Author(s):  
Bożena Łosiewicz ◽  
Grzegorz Dercz ◽  
Magdalena Szklarska ◽  
Wojciech Simka ◽  
Marta Łężniak ◽  
...  

The chitosan (CH) coatings on a Ti13Zr13Nb alloy substrate were obtained by electrophoretic deposition (EPD). The EPD yield was investigated under different deposition conditions. The microstructure of the CH coatings obtained by cataphoresis was studied by scanning electron microscopy and the chemical composition was examined using EDAX. The functional groups and formed phases were analyzed using Fourier transform infrared spectroscopy and X-ray diffraction, respectively. It was found that the CH coating thickness and porosity can be controlled by time and voltage used for the EPD process. It was ascertained that the studied EPD of the natural biopolymer, chitosan, in aqueous solution is applicable for the surface modification of the Ti13Zr13Nb implants to develop novel bioactive coatings.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8191-8201
Author(s):  
Fuqiang Hu ◽  
Yucheng Hu ◽  
Lingling Zhang ◽  
Meixue Gan ◽  
Shangjun Liu ◽  
...  

The aim of this paper was to enhance paper strength in NaOH/thiourea aqueous solution at room temperature. Paper from cotton pulp was saturated with room temperature NaOH/thiourea aqueous solution and placed at a fixed temperature (8, 15, and 20 °C) for a period of time (1 h, 2 h, 4 h, and 6 h). The morphology, X-ray diffraction (XRD), mechanical properties, and density of paper were characterized. The results indicated the paper was self-reinforced. Scanning electron microscopy (SEM) photographs indicated that the structure of the treated papers was increasingly compact with decreasing temperature. The XRD results showed that the crystallinity degree of the paper decreased from 80.0% to 60.0%. The stress at break of the treated papers increased by more than fivefold. The wet tensile strength of the treated papers increased remarkably.


2021 ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyothi Mannekote Shivanna ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Abstract In the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterised using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDX) and N2 adsorption-desorption isotherm (BET). XRD and FTIR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30℃). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption-desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


2012 ◽  
Vol 573-574 ◽  
pp. 63-67 ◽  
Author(s):  
Hong Mei Chen ◽  
Jin Liu ◽  
Xian Zhong Cheng ◽  
Yuan Peng

The performance of native eggshell membrane in removing of malachite green (MG) from aqueous solution was investigate. The effect of pH, adsorbent concentration, temperature, and contact time were performed by static testing. The maximum biosorption was both observed at pH 6.0 on the eggshell membrane. Optimal adsorption capacity (89.72 mg g-1) at initial concentration 100 mg L-1 and rate (98.69%) was obtained at pH 5.5. Characterization of the biosorbent eggshell membrane was performed using scanning electron microscope (SEM), and Fourier transform-infrared (FTIR) spectroscopy. The kinetic and equilibrium studies suggest that the adsorption follows Langmuir isotherm model. Desorption studies revealed that MG could be well removed from wastewater.


2021 ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyothi Mannekote Shivanna ◽  
Jyotishkumar Parameswaranpillai ◽  
...  

Abstract In the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterised using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDX) and N2 adsorption-desorption isotherm (BET). XRD and FTIR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30°C). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption-desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


2012 ◽  
Vol 599 ◽  
pp. 391-394 ◽  
Author(s):  
Jin Liu ◽  
Xian Zhong Cheng ◽  
Peng Qin ◽  
Ming Ying Pan

The performance of native eggshell membrane in removing of Congo Red (CR) from aqueous solution was investigated. The effect of pH, adsorbent concentration, temperature, and contact time were performed by static testing. The maximum biosorption was both observed at pH 7.0 on the eggshell membrane. Optimal adsorption capacity (112.3 mg g-1) at initial concentration 10 mg L-1 and rate (99.17%) was obtained at pH 6.8. Characterization of the bioSuperscript textsorbent eggshell membrane was performed using scanning electron microscope (SEM), and Fourier transform-infrared (FTIR) spectroscopy. The kinetic and equilibrium studies suggest that the adsorption follows Langmuir isotherm model.


2020 ◽  
Vol 10 (1) ◽  
pp. 46-61 ◽  
Author(s):  
Jihane Assaoui ◽  
Zineb Hatim ◽  
Abdelmoula Kheribeche

A novel adsorbent was obtained by a facile precipitation method and was used for fluoride removal from aqueous solution. Mineralogical and physicochemical characterization of the adsorbent was carried out by X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Energy Dispersive X-Ray attached to Scanning Electron Microscopy (SEM-EDX), BET Specific Surface Area(SSAN2BET) analysis and Fourier-Transform Infrared Spectrometry (FTIR). The effect of various operational parameters such as contact time, initial fluoride concentration, (20-160 mg L-1) adsorbent dose (1-6 g L-1) and initial pH solution (3-11) was evaluated in batch procedures at room temperature (25±2°C). The results of the batch adsorption experiments proved that 24 h of contact time was sufficient for attaining equilibrium. The maximum wastewater defluoridation (84.91%) was obtained for 40 mg L-1 and 3 g L-1 of initial fluoride concentration and adsorbent dose, respectively. It appears that there was no significant effect on the F- removal over a wide range of pH 3-11. Kinetic studies revealed that fluoride adsorption fitted well to pseudo-second-order. The adsorption isotherm of fluoride sorption indicated that the maximum adsorption capacity was noted to be 43.29 mg g-1. Batch adsorption data was better described by Langmuir isotherm confirming monolayer adsorption with homogenous distribution of active sites and without interaction between adsorbed molecules. The obtained results indicated that the ion exchange is probably the main mechanism involved in the F- adsorption by the aluminium-based adsorbent.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

AbstractIn the present work, we have developed a mesoporous silicalite-1 using CMC as a template for the removal of MB from aqueous solution. The synthesized silicalite-1 were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Energy-dispersive X-ray spectroscopy (EDAX) and N2 adsorption–desorption isotherm (BET). XRD and FT-IR analysis confirmed the formation of crystallinity and development of MFI structure in the mesoporous silicalite-1. The adsorption of MB dye on mesoporous silicalite-1 was conducted by batch adsorption method. The effect of various parameters such as adsorbent dosage, initial dye concentration, contact time and temperature on the dye uptake ability of silicalite-1 was investigated. The operating parameters for the maximum adsorption are silicalite-1 dosage (0.1 wt%), contact time (240 min), initial dye concentration (10 ppm) and temperature (30 ℃). The MB dye removal onto mesoporous silicalite-1 followed pseudo-second-order kinetic and Freundlich isotherm. The silicalite-1 exhibits 86% removal efficiency even after six adsorption–desorption cycle. Therefore, the developed mesoporous silicalite-1 is an effective eco-friendly adsorbent for MB dye removal from aqueous environment.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Liu Liu ◽  
Decai Gong ◽  
Zhengquan Yao ◽  
Liangjie Xu ◽  
Zhanyun Zhu ◽  
...  

Abstract Historically, sutras played an important role in spreading Buddhist faith and doctrine, and today these remain important records of Buddhist thought and culture. A Mahamayuri Vidyarajni Sutra with polychrome paintings was found inside the cavity on top of the Nanmen Buddhist pagoda, built in the early Tang dynasty (618–627 CE) and located in Anhui Province, China. Textile was found on the preface which is strongly degraded and fragile. Unfortunately, the whole sutra is under severe degradation and is incomplete. Technical analysis based on scientific methods will benefits the conservation of the sutra. Optical microscopy (OM), micro-Raman spectroscopy combined with optical microscope (Raman), scanning electron microscopy in combination with energy dispersive X-ray analysis (SEM–EDS) and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterize the pigment and gilded material, as well as the paper fiber and textile. Pigments such as cinnabar, minium, paratacamite, azurite, lead white were found. Gilded material was identified as gold. A five-heddle warp satin, made of silk, was found as the textile on the preface of the sutra. The sutra’s preface and inner pages were made of paper comprised of bamboo and bark. As a magnificent yet recondite treasure of Buddhism, the sutra was analyzed for a better understanding of the material. A conservation project of the sutra will be scheduled accordingly.


Sign in / Sign up

Export Citation Format

Share Document