scholarly journals Penanganan dan Pemanfaatan Limbah Biomassa Sawit Ramah Lingkungan di PT Semen Baturaja

2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Denny Irawati ◽  
Ganis Lukmandaru ◽  
Joko Sulistyo ◽  
Sigit Sunarta ◽  
Tomy Listyanto ◽  
...  

In order to meet the land requirements for housing construction of its employees, PT Semen Baturaja Tbk. (PTSB) opens approximately 27 ha of land which is estimated to have approximately 2700 less productive oil palm trees. The opening of the land will produce substantial palm biomass. One of the efforts to utilize palm oil biomass waste is by processing it into compost. Compost can be used for rehabilitation of ex-mine land by PTSB. So far, PTSB has no experience in the field of composting, therefore PTSB in collaboration with the Faculty of Forestry, Gadjah Mada University produces compost from waste palm oil biomass. The method used in this service activity is socialization, participatory composting, and mentoring in the field. The output of this activity is in the form of palm biomass compost and knowledge about the technology of the composting process for PTSB. The amount of compost that can be obtained from 8 oil palm leaf mounds is 248.9 tons while that of the oil palm stem is 1,236.6 tons. Compost fertilizer after composting for 2 months has a C/N ratio of 13.7. The cost for composting is Rp. 591,405,000, with a potential profit of Rp. 6,093,232,500, -. The impact of knowledge on composting is saving on spending on PTSB to buy fertilizer for land rehabilitation and handling the problem of biomass waste.

MATEMATIKA ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 95-104
Author(s):  
Mohd Ismail Abd Aziz ◽  
Noryanti Nasir ◽  
Akbar Banitalebi

Successful palm oil plantation should have high returns profit, clean and environmental friendly. Since oil palm trees have a long life and it takes years to be fully grown, controlling the felling rate of the palm oil trees is a fundamental challenge. It needs to be addressed in order to maximize oil production. However, a good arrangement of the felling palm oil trees may still affect the amount of carbon absorption. The objective of this study is to develop an optimal felling model of the palm oil plantation system taking into account both oil production and carbon absorption. The model facilitates in providing the optimal control of felling rate that results in maximizing both oil production and carbon absorption. With this aim, the model is formulated considering palm oil biomass, carbon absorption rate, oil production rate and the average prices of carbon and oil palm. A set of real data is used to estimate the parameters of the model and numerical simulation is conducted to highlight the application of the proposed model. The resulting parameter estimation is solved that leads to an optimal control of felling rate problem.


2018 ◽  
Vol 34 ◽  
pp. 01008
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mostafa Samadi ◽  
Abdul Rahman Mohd. Sam ◽  
Nur Hafizah Abd Khalid ◽  
Noor Nabilah Sarbini ◽  
...  

This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.


2017 ◽  
Vol 115 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Kimberly M. Carlson ◽  
Robert Heilmayr ◽  
Holly K. Gibbs ◽  
Praveen Noojipady ◽  
David N. Burns ◽  
...  

Many major corporations and countries have made commitments to purchase or produce only “sustainable” palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km2) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y−1. Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation.


2018 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Gusti Rusmayadi

The tendentious issue of deforestation, biodiversity, "water greedy" attack ganoderma and carbon emissions continue to heat up in this decade has cornered palm plantations in Indonesia for allegedly either from outside or from inside the country becomes the base of why. To clarify these issues then this article aims to analyze the impact of oil palm plantations in terms of the water balance of plant oil palm. Water use in the oil palm plantations on average 92.05 mm/month or equivalent to 1104.5 mm/year over lamtoro stands is 3,000 mm/year, acacia 2,400 mm/year, sengon of 2,300 mm/year, amounting tea 900 mm/year, rubber amounted to 1,300 mm/year, bamboo amounted to 3,000 mm/year and teak amounted to 1,300 mm/year. The coefficient of oil palm crop of 0.93. The percentage amount of rainfall used palm oil amounted to only 39.60% of the annual rainfall. Percentage of evapotranspiration value is smaller than the value of evapotranspiration pine percentage of 64.5%, A. mangium 68.8%, amounting to 55.1% of ferns and eucalyptus (E.alba) amounted to 52.4%. Meanwhile, rubber plant has a value of 1 kc, other crops such as rice, during the period of growth has kc values between 1.05 to 1.2. Soil water content (KAT) which indicates the storage capacity of the root zone of oil lower than the root zone rubber (Rusmayadi, 2011). This is due to the oil more roots growing in the topsoil to a depth of ± 1 meter and as you go down the less. Rooting most densely contained at a depth of 25 cm. Therefore the ability of smaller savings in oil palm plantations compared to rubber, then the excess water will be removed or overflowed (Ro) is not taken ("greedy water") by palm trees. Palm oil as a commodity to be seen objectively with regard to the nature of biological (plant roots), physiological (crop coefficient), and environmental (water storage capacity). This is to straighten out the problems that it is not water but greedy oil plantation management who do not pay attention to aspects of water conservation.


2021 ◽  
Vol 56 (3) ◽  
pp. 179-195
Author(s):  
Ardi Novra ◽  
Fatati ◽  
Adriani

This article describes a new idea of how the level of intervention in household empowerment policies is based on an empirical study of the magnitude of the negative impact of the smallholder palm oil replanting (SPR) program. One of the negative impacts is the temporary loss of income (TLI) for farmer households due to the cessation of production of oil palm fruit bunches. This study aims to analyze the magnitude of the impact of the SPR program on household and regional economies as a basis for making decisions on the intensity level of community empowerment programs. The household survey research was conducted in three village centers for smallholder rubber plantations in Jambi Province, Indonesia: Purwodadi Village, Dataran Kempas, and Sungai Keruh. The research result shows that the average potential TLI in each household is IDR 2,364,644/month (equivalent to 74.55% of the oil palm household income or 39.78% of the regional economy) if replanting palm oil is carried out. Purwodadi Village is the village most vulnerable to regional economic disturbances due to the high potential for TLI, reaching 99.43% of the oil palm household income and 67.06% of the regional economy. The level of TLI is influenced by factors of age and area of old oil palm plants, the proportion of households that will undergo the replanting process of oil palm, and the level of dependence of regions on oil palm farming. Based on the research results, it can be concluded that there is still a need for innovation and expansion of empowerment programs to encourage household readiness in facing the community oil palm rejuvenation program.


2018 ◽  
Vol 29 (2) ◽  
pp. 235
Author(s):  
Cinthya Meneses Fernández ◽  
Gustavo Quesada Roldán

The replacement of imported substrates by local materials is a trend in severaltechnifiedproduction systems, given the cost reduction and the importance of agricultural by-products, formerly considered to be waste. The main objective of this work was to validate the effect of different substrates on the growth and productivity of Dutch cucumber plants under greenhouse conditions. The study took place from October 2012 to January 2013, at the Agricultural Experiment Station Fabio Baudrit, Alajuela, Costa Rica. Variety Fuerte was used and four mixed substrates (volume ratio) made of local raw materials as coconut fiber (FC), oil palm leaf fiber (FP), organic compost (ABO), and sawdust (AS) as well as a commercial treatment (control) constituted by coco coir slabs were analyzed. Substrate water content, plant growth (vegetative phase), and yield were evaluated according to commercial size (S, M, L, XL, and rejected). The growth of Dutch cucumber plants, variety Fuerte, was higher on substrates with coconut fiber 40% + oil palm leaf fiber 40% + organic compost 20%, and coconut fiber 70% + organic compost 30%, while yield of the same two substrates was 15.57 and 15.44 kg/m2, respectively. Both treatments were statistically equal to the commercial coco coir substrate slabs with a yield of 14.77 kg/m2. Result attributed to the nutritional contribution of the organic compost (high K, Ca, and Mg) along with and to the effects of aeration and water retention of fibers.


1988 ◽  
Vol 37 (7) ◽  
pp. 502-507 ◽  
Author(s):  
Masakazu YAMAOKA ◽  
Akio TANAKA ◽  
Wuryaningsih Sri RAHAYU ◽  
Carmelita Lacap HERNANDEZ ◽  
JAMILAH
Keyword(s):  
Palm Oil ◽  
Oil Palm ◽  

2016 ◽  
Vol 78 (2) ◽  
Author(s):  
Then Kek Hoe ◽  
Mohamad Roji Sarmidi ◽  
Sharifah Shahrul Rabiah Syed Alwee ◽  
Zainul Akmar Zakaria

The palm oil industry generates large amount of biomass waste such as oil palm empty fruit bunch (EFB) and palm oil mill effluent (POME). This biomass would be typically recycled to produce EFB compost that is a valuable agricultural input. This study was conducted to evaluate the suitability of using EFB compost as carrier for nitrogen fixing bacteria (NFB) and phosphate solubilizing bacteria (PSB). Mixture (50-60% moisture) between EFB (shredded short fibres) and POME (anaerobic pond) were added with Effective Microorganisms (EM) to accelerate the composting process. The EFB compost reached thermophilic phase after 4-6 weeks with consistent temperature between 50-60oC. After 7 weeks of composting, EFB compost reached the mesophilic phase with continuous reduction of temperature to 35-40oC at week 8. The maturity of the compost is supported from the reduction of the C/N ratio from 36 (initial) to 20 (after 6 weeks). Mature EFB compost was sun-dried and ground into fine particle size (1 mm) prior to be used as carrier. Dried EFB compost carrier has the following characteristics (dry weight); average pH at 7.5, C/N ratio - 13.5, moisture - 17.4%, organic matter – 74.5%, total N - 3.06%, P - 0.37%, K - 4.74%, Ca - 3.32% and Mg - 0.79%. The inoculation of NFB and PSB into the EFB compost carrier from single cultures of Serratia marcescens and Enterobacter cloacae showed high viable cell count at 4.05 x 109 CFU/g and 2.75 x 108 CFU/g respectively at day three after inoculation. Meanwhile, the mixed culture of Burkholderia cenocepacia with Serratia marcescens showed 2.45 x 108 CFU/g and 4.31 x 109 CFU/g respectively. This clearly indicates the potential of using EFB as a useful alternative for bacterial immobilization prior to application in the oil palm industries.


2019 ◽  
Vol 20 (1) ◽  
pp. 57
Author(s):  
Iin Parlina

ABSTRACTConversion of lignocellulosic biomass such as Oil Palm-Empty Fruit Bunch (OP-EFB) into bioenergy is a promising solution to mitigate the impact of climate change and avoid an energy crisis that have been globally anticipated. The abundance amount of OP-EFB as a biomass waste from oil palm processing in Indonesia has opened more chance to produce bio-energy and other valuable products without having competition with the food sector. It has a high content of cellulose and hemicellulose that can be processed generating bio-energy such as biogas or bioethanol. However, to be processed into bio-energy, and other products, EFB should be pretreated first to break the recalcitrant characteristic and increase the yield and conversion rate. Alkaline pretreatment is widely known for its effectivity on lignin removal to open more access of the lignocellulose, especially for the Anaerobic Digestion (AD) process. There are several ways to evaluate Pratritmen performance before the AD process, for example by chemical analysis as well as visual observation using a microscope. Visual observation emphasizes the change in microstructure or morphology of the pretreatment process so that it can be a method for physically explaining what is happening at the microscopic level. This research’s objective is to perform microscopy observation on the OP-EFB component’s changes during the low concentrated alkaline pretreatment using NaOH 6% and mixture of NH4OH and (NH4)2CO3 10% as long as 24 hours. The result from using CLSM shows the process of delignification, while SEM shows 3 major visual changes i.e. silica bodies removal, surface degradation and the enhanced bacteria’s affinity to the OP-EFB’s surface.Keywords: Microscopy analysis, Oil palm empty fruit bunch, alkaline pretreatment, Anaerobic Digestion, visual changes  ABSTRAKKonversi biomasa lignoselulosa seperti Tandan Kosong Sawit (TKS) menjadi bioenergi adalah solusi yang menjanjikan untuk mengurangi dampak perubahan iklim dan menghindari krisis energi yang telah diantisipasi secara global. Jumlah kelimpahan TKS sebagai residu dari proses produksi minyak kelapa sawit telah membuka banyak peluang untuk menghasilkan bioenergi dan produk nilai lainnya tanpa bersaing dengan sektor pangan. TKS memiliki kandungan selulosa dan hemiselulosa tinggi yang dapat diproses menghasilkan bioenergi seperti biogas atau bioetanol. Namun, untuk diproses menjadi bio-energi, dan produk lainnya, substrat ini harus dipratritmen terlebih dahulu untuk mengatasi karakteristik rekalsitransi yang menjadi penghambat utama dalam proses biokonversi. Pratritmen dengan menggunakan reagent basa (alkalin) secara luas dikenal karena efektifitasnya pada penghilangan lignin untuk membuka lebih banyak akses lignoselulosa, terutama untuk proses produksi biogas (AD). Terdapat beberapa cara untuk mengevaluasi kinerja Pratritmen sebelum proses AD, misalnya dengan analisis kimia juga pengamatan visual dengan menggunakan mikroskop. Observasi visual menekankan adanya perubahan mikrostruktur atau morfologi dari proses pratritmen sehingga bisa menjadi metode untuk menjelaskan secara fisik apa yang terjadi dalam tataran mikroskopis. Tujuan dari penelitian adalah melakukan analisis mikroskopi dengan menggunakan confocal dan SEM pada TKS sebelum dan setelah dilakukan pratritmen dengan alkalin NaOH 6% dan campuran NH4OH dengan (NH4)2CO310% selama 24 jam juga TKS hasil pratritmen yang digunakan untuk proses produksi biogas. Hasil dari Confocal memperlihatkan adanya perubahan dari TKS sebelum dan setelah pretreatmen yaitu terjadinya proses delignifikasi, sementara hasil SEM memperlihatkan 3 perubahan visual utama yang dapat dianalisis yaitu penghilangan silika, degradasi permukaan dan peningkatan afinitas bakteri pada permukaan TKS yang dilakukan pratritmen.Kata kunci : analisis mikroskopi, tandan kosong kelapa sawit, pratritmen alkalin, Anaerobic Digestion, perubahan visual


2010 ◽  
Vol 1 (1) ◽  
pp. 11-15
Author(s):  
Mohamad Khairil Mohamad

Malaysia oil palm industry is the leading commodities and one of the major contributors to the Malaysia economic after oil and gas sector. Malaysia and Indonesia palm oil plantations are the major commodity producer with Malaysia currently being the world’s second-largest area of oil palm after Indonesia. Together these two countries account about 84% of total world production and 88% of global exports. With the increasing price and demands for the Crude Palm Oil (CPO) and with the 4.69 million hectares that were planted with oil palm trees, plantation industry and estate managers has to look into the most crucial factor that will decide the yield and quality of the CPO that is being sent to the mill. Typically, palm oil plantations include production areas requiring supporting infrastructure such as buildings, roads and services/management. When there is a better management of the roads in the estates, better Fresh fruit Bunch (FFB) and CPO quality will be sent to mill and processed. Road transport has a fundamental meaning for the sustainable agriculture. Poor quality and inadequate coverage of roads, lack of maintenance operations and outdated road maps continue to hinder economic development in the plantation. This work focuses on studying the present state of road infrastructure and its mapping in Felda Trolak Utara, Perak. The road infrastructure of the study area is studied by GPS and GIS based methodology. Data of road infrastructure characteristics were collected from GPS device and road infrastructure of the test sites then analyzed in GIS environment. The results of this study may be applied to road infrastructure mapping in oil palm plantation in general context, although with certain limits. In particular, the “noise” of road network occurred and need to rectify the topologies of the network.


Sign in / Sign up

Export Citation Format

Share Document