scholarly journals STORM "GREEDY WATER" PALM OIL BASED ON ACADEMIC PERSPECTIVE

2018 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Gusti Rusmayadi

The tendentious issue of deforestation, biodiversity, "water greedy" attack ganoderma and carbon emissions continue to heat up in this decade has cornered palm plantations in Indonesia for allegedly either from outside or from inside the country becomes the base of why. To clarify these issues then this article aims to analyze the impact of oil palm plantations in terms of the water balance of plant oil palm. Water use in the oil palm plantations on average 92.05 mm/month or equivalent to 1104.5 mm/year over lamtoro stands is 3,000 mm/year, acacia 2,400 mm/year, sengon of 2,300 mm/year, amounting tea 900 mm/year, rubber amounted to 1,300 mm/year, bamboo amounted to 3,000 mm/year and teak amounted to 1,300 mm/year. The coefficient of oil palm crop of 0.93. The percentage amount of rainfall used palm oil amounted to only 39.60% of the annual rainfall. Percentage of evapotranspiration value is smaller than the value of evapotranspiration pine percentage of 64.5%, A. mangium 68.8%, amounting to 55.1% of ferns and eucalyptus (E.alba) amounted to 52.4%. Meanwhile, rubber plant has a value of 1 kc, other crops such as rice, during the period of growth has kc values between 1.05 to 1.2. Soil water content (KAT) which indicates the storage capacity of the root zone of oil lower than the root zone rubber (Rusmayadi, 2011). This is due to the oil more roots growing in the topsoil to a depth of ± 1 meter and as you go down the less. Rooting most densely contained at a depth of 25 cm. Therefore the ability of smaller savings in oil palm plantations compared to rubber, then the excess water will be removed or overflowed (Ro) is not taken ("greedy water") by palm trees. Palm oil as a commodity to be seen objectively with regard to the nature of biological (plant roots), physiological (crop coefficient), and environmental (water storage capacity). This is to straighten out the problems that it is not water but greedy oil plantation management who do not pay attention to aspects of water conservation.

2011 ◽  
Vol 15 (8) ◽  
pp. 2509-2518 ◽  
Author(s):  
A. Guevara-Escobar ◽  
M. Cervantes-Jiménez ◽  
H. Suzán-Azpiri ◽  
E. González-Sosa ◽  
L. Hernández-Sandoval ◽  
...  

Abstract. Interception losses are a major influence in the water yield of vegetated areas. For most storms, rain interception results in less water reaching the ground. However, fog interception can increase the overall water storage capacity of the vegetation and once the storage is exceeded, fog drip is a common hydrological input. Fog interception is disregarded in water budgets of semiarid regions, but for some plant communities, it could be a mechanism offsetting evaporation losses. Tillandsia recurvata is a cosmopolitan epiphyte adapted to arid habitats where fog may be an important water source. Therefore, the interception storage capacity by T. recurvata was measured in controlled conditions and applying simulated rain or fog. Juvenile, vegetative specimens were used to determine the potential upperbound storage capacities. The storage capacity was proportional to dry weight mass. Interception storage capacity (Cmin) was 0.19 and 0.56 mm for rainfall and fog respectively. The coefficients obtained in the laboratory were used together with biomass measurements for T. recurvata in a xeric scrub to calculate the depth of water intercepted by rain. T. recurvata contributed 20 % to the rain interception capacity of their shrub hosts: Acacia farnesiana and Prosopis laevigata and; also potentially intercepted 4.8 % of the annual rainfall. Nocturnal stomatic opening in T. recurvata is not only relevant for CO2 but for water vapor, as suggested by the higher weight change of specimens wetted with fog for 1 h at dark in comparison to those wetted during daylight (543 ± 77 vs. 325 ± 56 mg, p = 0.048). The storage capacity of T. recurvata leaf surfaces could increase the amount of water available for evaporation, but as this species colonise montane forests, the effect could be negative on water recharge, because potential storage capacity is very high, in the laboratory experiments it took up to 12 h at a rate of 0.26 l h−1 to reach saturation conditions when fog was applied.


2016 ◽  
Vol 16 (5) ◽  
pp. 1467-1476 ◽  
Author(s):  
Yong Peng ◽  
Jinggang Chu ◽  
Xinguo Sun ◽  
Huicheng Zhou ◽  
Xiaoli Zhang

Many hydraulic projects such as reservoirs, ponds and paddy fields as well as soil and water conservation engineering projects have been constructed to improve utilization of water resources upstream of the Wudaogou station basin in Northeast China in recent years. As a result, the local hydrological characteristics of the basin and the flood runoff and process have been changed. These changes in the basin characteristics make basin hydrological forecasting more difficult. In order to model and assess this situation, the TOPMODEL, which includes the dynamic soil moisture storage capacity (DSMSC-TOPMODEL), is used in this study to simulate the flood impact of hydraulic projects. Furthermore, the Bayesian method is used to evaluate model parameter uncertainty and assess the TOPMODEL's performance over the basin. Flood simulation results show that accuracy is significantly improved when the stock version of TOPMODEL is replaced with DSMSC-TOPMODEL, with the qualified ratio of forecasting runoff yield increasing from 65% in the former to 88% in the latter. Moreover, these flood simulations are more suitable for helping observers visualize the process.


2017 ◽  
Vol 115 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Kimberly M. Carlson ◽  
Robert Heilmayr ◽  
Holly K. Gibbs ◽  
Praveen Noojipady ◽  
David N. Burns ◽  
...  

Many major corporations and countries have made commitments to purchase or produce only “sustainable” palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km2) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y−1. Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation.


2021 ◽  
Vol 56 (3) ◽  
pp. 179-195
Author(s):  
Ardi Novra ◽  
Fatati ◽  
Adriani

This article describes a new idea of how the level of intervention in household empowerment policies is based on an empirical study of the magnitude of the negative impact of the smallholder palm oil replanting (SPR) program. One of the negative impacts is the temporary loss of income (TLI) for farmer households due to the cessation of production of oil palm fruit bunches. This study aims to analyze the magnitude of the impact of the SPR program on household and regional economies as a basis for making decisions on the intensity level of community empowerment programs. The household survey research was conducted in three village centers for smallholder rubber plantations in Jambi Province, Indonesia: Purwodadi Village, Dataran Kempas, and Sungai Keruh. The research result shows that the average potential TLI in each household is IDR 2,364,644/month (equivalent to 74.55% of the oil palm household income or 39.78% of the regional economy) if replanting palm oil is carried out. Purwodadi Village is the village most vulnerable to regional economic disturbances due to the high potential for TLI, reaching 99.43% of the oil palm household income and 67.06% of the regional economy. The level of TLI is influenced by factors of age and area of old oil palm plants, the proportion of households that will undergo the replanting process of oil palm, and the level of dependence of regions on oil palm farming. Based on the research results, it can be concluded that there is still a need for innovation and expansion of empowerment programs to encourage household readiness in facing the community oil palm rejuvenation program.


2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Denny Irawati ◽  
Ganis Lukmandaru ◽  
Joko Sulistyo ◽  
Sigit Sunarta ◽  
Tomy Listyanto ◽  
...  

In order to meet the land requirements for housing construction of its employees, PT Semen Baturaja Tbk. (PTSB) opens approximately 27 ha of land which is estimated to have approximately 2700 less productive oil palm trees. The opening of the land will produce substantial palm biomass. One of the efforts to utilize palm oil biomass waste is by processing it into compost. Compost can be used for rehabilitation of ex-mine land by PTSB. So far, PTSB has no experience in the field of composting, therefore PTSB in collaboration with the Faculty of Forestry, Gadjah Mada University produces compost from waste palm oil biomass. The method used in this service activity is socialization, participatory composting, and mentoring in the field. The output of this activity is in the form of palm biomass compost and knowledge about the technology of the composting process for PTSB. The amount of compost that can be obtained from 8 oil palm leaf mounds is 248.9 tons while that of the oil palm stem is 1,236.6 tons. Compost fertilizer after composting for 2 months has a C/N ratio of 13.7. The cost for composting is Rp. 591,405,000, with a potential profit of Rp. 6,093,232,500, -. The impact of knowledge on composting is saving on spending on PTSB to buy fertilizer for land rehabilitation and handling the problem of biomass waste.


2009 ◽  
Vol 31 (2) ◽  
pp. 237 ◽  
Author(s):  
Katrien Descheemaeker ◽  
Dirk Raes ◽  
Jan Nyssen ◽  
Jean Poesen ◽  
Mitiku Haile ◽  
...  

The establishment of exclosures (i.e. areas closed for grazing and agriculture) is a common practice to reverse land degradation through vegetation regeneration in the semiarid highland areas of northern Ethiopia. In order to assess the effect of exclosures on water flows, the water balance components for different vegetation regeneration stages were assessed through field measurements and modelling. Successful model calibration and validation was done based on soil water content measurements conducted during 2 years in 22 experimental plots. In the protected areas, vegetation regeneration leads to an increase in infiltration and transpiration and a more productive use of water for biomass production. In areas where additional lateral water (runon) infiltrates, source–sink systems are created. Here, up to 30% of the annual rainfall percolates through the root-zone towards the groundwater table. Increased biomass production in exclosures leads to possibilities for wood harvesting and cut and carry of grasses for livestock feeding. Together with water conservation and more productive use of water, the latter contributes to increased livestock water productivity. At the landscape scale, the creation of vegetation filters, capturing resources like water and nutrients, reinforces the rehabilitation process and healthy landscape functioning.


2019 ◽  
Vol 11 (21) ◽  
pp. 2580 ◽  
Author(s):  
Yifei Tian ◽  
Lihua Xiong ◽  
Bin Xiong ◽  
Ruodan Zhuang

Integration of satellite-based data with hydrological modelling was generally conducted via data assimilation or model calibration, and both approaches can enhance streamflow predictions. In this study, we assessed the feasibility of another approach that uses satellite-based soil moisture data to directly estimate the parameter β to represent the degree of the spatial distribution of soil moisture storage capacity in the semi-distributed Hymod model. The impact of using historical root-zone soil moisture data from the Soil Moisture Active Passive (SMAP) mission on the prior estimation of the parameter β was explored. Two different ways to incorporate the root-zone soil moisture data to estimate the parameter β are proposed, i.e., one is to derive a priori distribution of β , and the other is to derive a fixed value for β . The simulations of the Hymod models employing the two ways to estimate β are compared with the results produced by the original model, i.e., the one without employing satellite-based data to estimate the parameter β , at three study catchments (the Upper Hanjiang River catchment, the Xiangjiang River catchment, and the Ganjiang River catchment). The results illustrate that the two ways to incorporate the SMAP root-zone soil moisture data in order to predetermine the parameter β of the semi-distributed Hymod model both perform well in simulating streamflow during the calibration period, and a slight improvement was found during the validation period. Notably, deriving a fixed β value from satellite soil moisture data can provide better performance for ungauged catchments despite reducing the model freedom degrees due to fixing the β value. It is concluded that the robustness of the Hymod model in predicting the streamflow can be improved when the spatial information of satellite-based soil moisture data is utilized to estimate the parameter β .


2006 ◽  
Vol 57 (3) ◽  
pp. 269 ◽  
Author(s):  
P. R. Ward

Rising watertables and dryland salinity in southern Australia are due to excess groundwater recharge after the replacement of native vegetation by annual crops and pastures. The inclusion of perennial plants into agricultural systems has been proposed as a possible method of recharge reduction, through the creation of a buffer (extra water storage capacity generated by the perennial in comparison with an annual crop or pasture). However, the role of perennial phases under conditions of highly episodic leakage is not well understood. In this paper, a simple Leakage/Buffer Model (LeBuM) was developed to determine the effect of perennial phases on long-term average annual leakage, incorporating episodic events. Mechanistic modelling studies on contrasting soil types were used to demonstrate that leakage for any given May–December period was directly related to soil water storage at 1 May. From this finding, it follows that leakage from a phase rotation can be calculated if the size of the buffer, and the leakage quantity in the absence of a buffer, are known for each stage of the rotation. LeBuM uses a long-term sequence of leakage values in the absence of a buffer as input, and the maximum buffer size, its rate of development, and the length of perennial and annual phases are specified as parameters. LeBuM was applied to leakage data modelled for 5 contrasting soil types over 100 years at 24 sites in the Western Australian wheatbelt. Phase rotations on duplex, waterlogging duplex, or loamy sand soils reduced leakage by >90% for regions with <380 mm annual rainfall, but were less effective in wetter regions and on deep sands or acid loamy sands. Nevertheless, phase rotations if adopted widely could delay the onset of salinity by as much as several decades.


2016 ◽  
Vol 3 (2) ◽  
pp. 35-55 ◽  
Author(s):  
Mira Ariyanti ◽  
Sudirman Yahya ◽  
Kukuh Murtilaksono ◽  
Suwarto Suwarto ◽  
Hasril H. Siregar

The existence of oil palm plantations as a possible cause of drought in the surrounding areas in Indonesia is a critical issue. Therefore, information related to the effects of oil palm plantations on the surrounding environment in terms of soil water content (SWC) availability is needed. Soil and water conservation techniques in the form  of ridge terracing and cover crops,  such as Nephrolepis biserrata,  can be  expected to potentially improve soil water  reserves, especially in the dry-season, by accumulating water  in the rainy season.  This study aimed to study the effects of N. biserrata as cover crop, together with the potential effects of ridge terraces, on the water balance in mature oil palm plantations.  The research was conducted in mature oil palm plantations, Afdeling III block 375 (planted in 1996) and block 415 (planted in 2005), Rejosari Unit, PT Perkebunan Nusantara (PTPN) VII in Natar District, South Lampung Regency, Indonesia, from August 2014 to January 2015. The research was based on of setting up 15 m x 20 m experimental plots with the following treatments:  (i) without ridge terraces and without N. biserrata (G0T0); (ii) without ridge terraces but with N. biserrata (G0T1); (iii) with ridge terraces but without N. biserrata (G1T0); (iv) with ridge terraces and with N. biserrata (G1T1).   Hydrology parameter data were collected for each treatment plot; water balance was calculated using a water balance equation. The results showed that the use of the cover crop N. biserrata in combination with ridge terraces helped improving SWC reserves by approximately 71% and 12%, respectively.  The use of N. biserrata as a cover crop reduced the rate of water loss by percolation and run-off, by approximately 36% and 80%, respectively, in an area where the annual rainfall is above 2,400 mm per year.  The presence of N. biserrata shortened the period of SWC deficit by extending the period of a water surplus by 70 days when compared with ridge terracing alone (which reduced the period of SWC by 50 days).


Sign in / Sign up

Export Citation Format

Share Document