scholarly journals FORMULATION OF NANOPARTICLES OF ANTI-MIGRAINE DRUGS TRIPTANS BY COACERVATION METHOD

Author(s):  
Farshid A ◽  
Lakshmi Csr

  Objective: Triptans are effective medicines used to treat migraine and certain other headaches. This study has been conducted to prepared nanoparticles (NPs) of triptans by coacervation technique using a different drug to polymer ratios and evaluated.Methods: Polymers such as albumin and gelatin and cross-linking agent were used at different levels to prepare triptan NPs with high entrapment efficiency (EE) and low particle size (PS). Completion of the reaction was confirmed by infrared spectra. NPs were evaluated for shape and surface morphology, polydispersity index, zeta potential, EE, and PS distribution.Results: Among all the formulation, AA5 formulation of triptan-loaded albumin NPs (ANPs) has small PS and high EE.Conclusion: In this study, we have found that the ANPs in the presence of 4% glutaraldehyde as a cross-linking agent could be used as a delivery vehicle of triptans.

2020 ◽  
Vol 17 (1) ◽  
pp. 172-183
Author(s):  
Nandanwadkar Shrikrishna Madhukar Hema ◽  
Mastiholimath Vinayak Shivamurthy ◽  
Pulija Karunakar

Introduction: Capsaicin (8-methy-N-vanillyl-6-nonenamide), a potential analgesic derived from Capsicum annuum (Chili peppers), widely used from ancient times for its pharmacological activities such as anti-inflammatory, anti-oxidant and analgesic and provides relief from migraine and diabetes. But for obvious reasons, capsaicin cannot be administered directly. The present work was designed with a focus to comply with mandatory requirement in various pharmacopeias to know the actual content of API present in final formulations. The formulation (TS3) consisting of 3% lipid, with 4:6 ratio of the polymer and solvent, was found to be the optimized formulation, which gave the best evaluation with regard to the particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies and highest drug entrapment efficiency (68.34±4.24)%. The prepared transferosome formulation was subjected to characterization by validated HP-TLC method consisting of N-Hexane: Tert- Iso-butyl-methyl ether in ratio (5:15) v/v. Linearity was performed in the range of 50-1500 ng/spot with LOD/LOQ 50 ng and 150 ng, with regression analysis (R) of 99.91%. Recovery analysis was performed at 3 different levels at 80, 100 and 120 with an average recovery of 106.97%, respectively. Till now, no analytical method has been reported, associated with the characterization of pharmaceutical nano-forms (Capsaicin), like transferosomes. Thus, the maiden validated HP-TLC method for concurrent analysis of capsaicin as API in nano-transferosome may be employed in process quality control of formulations containing the said API. Background: The irritability and adverse effects post application, leading to inflammation and neural pain at the site of administration of newly Capsaicin API and its chemical entities and marketed formulations are usually related to poor permeability, leading to drug complex reactions in the development phases or therapeutic failure along with the quantification of the same in blood plasma. However, advancement in drug formulations with the use of polymer: alcohol ratio and modernized analytical techniques for the quantification of Pharmaceutical APIs seems to be emerging and promising for overcoming pain and related inflammatory complications by formulating the APIs in Transferosome formulation with Validated HP-TLC technique being used as an effective economic and precise tool for quantitative analysis of APIs in their respective nano-forms. Objective: The study proposes a novel standardized method development and validation of pharmaceutical nanoforms with Capsaicin as API. Method: Capsaicin Transferosomes were formulated using Ultra probe sonication by utilizing different proportions of phospholipid 90G dissolved in a mixture of ethanol and propylene glycol. The formulation was subjected to Dynamic Light Scattering (DLS) technique for nano-particle analysis followed by characterization with respect to particle size, polydispersity index, zeta potential and entrapment efficiency. The morphological study of vesicles was determined using SEM and TEM. A Validated HP-TLC method for the identification and determination of Capsaicin in transferosomes formulation was performed as per the ICH guidelines. Results: The formulation gave the best evaluation for particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies (SEM & TEM) and highest drug entrapment efficiency (68.34±4.24)%. DSC thermograms and FTIR spectral patterns confirmed no physical interaction by polymers with API. The prepared formulation was then characterized using HP-TLC method. The best resolution was found in NHexane: Tert-Isobutyl methyl ether in a ratio of 5:15 v/v. The Rf was found to be 0.3±0.03. Linearity was performed in a range of 50-1500 ng/spot, with regression analysis (R) of 99.91% Further, recovery analysis was done at 3 different levels as 80, 100 and 120 with an average recovery of 106.97%. The LOD/LOQ was found to be 50 and 150 ng, respectively. Precision was carried out in which % RSD was found to be precise and accurate. Conclusion: The outcomes of the present study suggested that the proposed novel formulation analyzed by Validated planar chromatographic technique (HP-TLC) for Capsaicin quantification in nanoforms may be employed as a routine quality control method for the said API in various other formulations.


Author(s):  
RISA AHDYANI ◽  
LARAS NOVITASARI ◽  
RONNY MARTIEN

Objective: The objectives of this study were to formulate and characterize nanoparticles gel of timolol maleate (TM) by ionic gelation method using chitosan (CS) and sodium alginate (SA). Methods: Optimization was carried out by factorial design using Design Expert®10.0.1 software to obtain the concentration of CS, SA, and calcium chloride (CaCl2) to produce the optimum formula of TM nanoparticles. The optimum formula was characterized for particle size, polydispersity index, entrapment efficiency, Zeta potential, and molecular structure. Hydroxy Propyl Methyl Cellulose (HPMC) K15 was incorporated into optimum formula to form nanoparticles gel of TM and carried out in vivo release study using the Franz Diffusion Cell. Results: TM nanoparticles was successfully prepared with concentration of CS, SA, and CaCl2 of 0.01 % (w/v), 0.1 % (w/v), and 0.25 % (w/v), respectively. The particle size, polydispersity index, entrapment efficiency, and Zeta potential were found to be 200.47±4.20 nm, 0.27±0.0154, 35.23±4.55 %, and-5.68±1.80 mV, respectively. The result of FTIR spectra indicated TM-loaded in the nanoparticles system. In vitro release profile of TM-loaded nanoparticles gel showed controlled release and the Korsmeyer-Peppas model was found to be the best fit for drug release kinetics. Conclusion: TM-loaded CS/SA nanoparticles gel was successfully prepared and could be considered as a promising candidate for controlled TM delivery of infantile hemangioma treatment.


2018 ◽  
Vol 8 (6) ◽  
pp. 82-86 ◽  
Author(s):  
Surendranath Betala ◽  
M Mohan Varma ◽  
K Abbulu

The aim of present study was to formulate and evaluate nanoparticles of carvedilol by using different hydrophilic polymers. Carvedilol was selected as a suitable drug for gastro- retentive nanoparticles due to its short half life, low bioavailability, high frequency of administration, and narrow absorption window in stomach and upper part of GIT. The nano-precipitation method was used to prepare nanoparticles so as to avoid both chlorinated solvents and surfactants to prevent their toxic effect on the body. Nanoparticles of  carvedilol were prepared by using hydrophilic polymers such as HPMC K100M, chitosan, and gelatin. The prepared formulations were then characterized for particle size, polydispersity index, zeta potential, loading efficiency, encapsulation efficiency and drug-excipient compatibility. The prepared nanoparticulate formulations of carvedilol  with different polymers in 1:1 ratio have shown particle size in the range of 250.12-743.07 nm, polydispersity index (PDI) in the range of 0.681-1.0, zeta potential in the range of -14.2 to +33.2 mV, loading efficiency in the range of 8.74-17.54%, and entrapment efficiency in the range of 55.7%-74.2%. Nanoparticulate formulation prepared with chitosan in 1:1 ratio showed satisfactory results i.e. average particle size 312.04 nm, polydispersity index 0.681, zeta potential 33.2 mV, loading efficiency 17.54%, and entrapment efficiency 73.4%. FTIR study concluded that no major interaction occurred between  the drug and polymers used in the present study. Keywords: Nanoparticles; gastro-retentive; nano-precipitation, polydispersity index, zeta potential; entrapment efficiency.


Author(s):  
Ankit Anand Kharia ◽  
A K Singhai ◽  
R Verma

The aim of present study was to formulate and evaluate nanoparticles of acyclovir by using different hydrophilic polymers. Acyclovir was selected as a suitable drug for gastro-retentive nanoparticles due to its short half life, low bioavailability, high frequency of administration, and narrow absorption window in stomach and upper part of GIT. The nano-precipitation method was used to prepare nanoparticles so as to avoid both chlorinated solvents and surfactants to prevent their toxic effect on the body. Nanoparticles of acyclovir were prepared by using hydrophilic polymers such as bovine serum albumin, chitosan, and gelatin. The prepared formulations were then characterized for particle size, polydispersity index, zeta potential, loading efficiency, encapsulation efficiency and drug-excipient compatibility. The prepared nanoparticulate formulations of acyclovir with different polymers in 1:1 ratio have shown particle size in the range of 250.12-743.07 nm, polydispersity index (PDI) in the range of 0.681-1.0, zeta potential in the range of -14.2 to +33.2 mV, loading efficiency in the range of 8.74-17.54%, and entrapment efficiency in the range of 55.7%-74.2%. Nanoparticulate formulation prepared with chitosan in 1:1 ratio showed satisfactory results i.e. average particle size 312.04 nm, polydispersity index 0.681, zeta potential 33.2 mV, loading efficiency 17.54%, and entrapment efficiency 73.4%. FTIR study concluded that no major interaction occurred between the drug and polymers used in the present study.  


2020 ◽  
Vol 10 (3) ◽  
pp. 408-417
Author(s):  
Jyotsana R. Madan ◽  
Izharahemad N. Ansari ◽  
Kamal Dua ◽  
Rajendra Awasthi

Purpose : The objective of this work was to formulate casein (CAS) nanocarriers for the dissolution enhancement of poorly water soluble drug celecoxib (CLXB). Methods: The CLXB loaded CAS nanocarriers viz., nanoparticles, reassembled CAS micelles and nanocapsules were prepared using sodium caseinate (SOD-CAS) as a carrier to enhance the solubility of CLXB. The prepared formulations were characterized for particle size, polydispersity index, zeta potential, percentage entrapment efficiency, and surface morphology for the selection of best formulation. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray powder diffraction study was used to for the confirmation of encapsulation of CLXB. Further, in vitro drug dissolution, ex-vivo permeation studies on chicken ileum and stability studies were carried out. Results: The CLXB loaded casein nanoparticles (CNP) (batch A2) showed a particle size diameter 216.1 nm, polydispersity index 0.422 with percentage entrapment efficiency of 90.71% and zeta potential of -24.6 mV. Scanning electron microscopy of suspension confirmed globular shape of CNP. The in vitro release data of optimized batch followed non Fickian diffusion mechanism. The ex vivo permeation studies on chicken ileum of CLXB loaded CNP showed permeation through mucous membrane as compared to pure CLXB. The apparent permeability of best selected freeze dried CLXB loaded CNP (batch A2) was higher and gradually increased from 0.90 mg/cm2 after 10 min to a maximum of 1.95 mg/cm2 over the subsequent 90 min. A higher permeation was recorded at each time point than that of the pure CLXB. Conclusion: The study explored the potential of CAS as a carrier for solubility enhancement of poorly water soluble drugs.


2019 ◽  
Vol 819 ◽  
pp. 27-32
Author(s):  
Sucharat Limsitthichaikoon ◽  
Chutima Sinsuebpol

Electrostatic interactions of polymeric charges become one of the important factors to form the polyelectrolyte complexes (PECs). In this work, PECs has successfully created through the interaction between positive charges of chitosan (CS) and negative charges of pectin (PE) based on the effect of pH and pKa of the polymers. The formation of PECs provides small particle size, positive surface charge, and high %entrapment efficiency (%EE) after loaded metronidazole (MTZ). Dropwise addition of PE solution into CS solution was carried out to form PECs. A certain concentration of chitosan and pectin fixed at ratio 3:1 while the pH of both polymers varied as pH 1, 3, 5, and 9. The alterations after forming PECs observed particle size, zeta potential, and turbidity of the solution along with FTIR, DSC, and TAG. Precipitation of PECs solution was found in the fixed pH 5 of PE solution dropwise into pH 7 and 9 CS solution, which referred to the unstable of the PECs system. The pH 1 and 9 of PE and CS obtained the large size which about 600-1200 nm, while zeta potential found a low positive charge of 5.54-11.90 mV. Thus, only the fixed pH 5 of CS solution and pH 3, 5, or 7 of PE solution to form PECs were used to load MTZ. After loaded MTZ, the particle size of the PECs was about 400-500 nm and the zeta potential was about 20-50 mV. Electrostatic interactions resulted from FTIR detected the changes in amino groups of CS and carboxyl groups of PE. Thermal analysis on DSC for determinations of melting points or transition temperatures and TGA to monitor weight loss by heat were confirmed the PECs and MTZ-PECs formation. The pH 5 of PE interacts with pH 5 of CS offered the smallest particle size as 438 nm, zeta potential about 23.5 mV, and the highest percentage of EE as about 50% of the drug-loaded. The pH 5 of PE and CS were the pH-responsive to the pKa, thus, the acidity of the polymers may provide a suitable condition to form the appropriate polyelectrolyte complexes. Keywords: Polyelectrolyte complex, polycation, polyanion, charge density


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1485
Author(s):  
Yogeeta O. Agrawal ◽  
Umesh B. Mahajan ◽  
Vinit V. Agnihotri ◽  
Mayur S. Nilange ◽  
Hitendra S. Mahajan ◽  
...  

Ezetimibe (EZE) possesses low aqueous solubility and poor bioavailability and in addition, its extensive hepatic metabolism supports the notion of developing a novel carrier system for EZE. Ezetimibe was encapsulated into nanostructured lipid carriers (EZE-NLCs) via a high pressure homogenization technique (HPH). A three factor, two level (23) full factorial design was employed to study the effect of amount of poloxamer 188 (X1), pressure of HPH (X2) and number of HPH cycle (X3) on dependent variables. Particle size, polydispersity index (PDI), % entrapment efficiency (%EE), zeta potential, drug content and in-vitro drug release were evaluated. The optimized formulation displays pragmatic inferences associated with particle size of 134.5 nm; polydispersity index (PDI) of 0.244 ± 0.03; zeta potential of −28.1 ± 0.3 mV; % EE of 91.32 ± 1.8% and % CDR at 24-h of 97.11%. No interaction was observed after X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies. EZE-NLCs (6 mg/kg/day p.o.) were evaluated in the high fat diet fed rats induced hyperlipidemia in comparison with EZE (10 mg/kg/day p.o.). Triglyceride, HDL-c, LDL-c and cholesterol were significantly normalized and histopathological evaluation showed normal structure and architecture of the hepatocytes. The results demonstrated the superiority of EZE-NLCs in regard to bioavailability enhancement, dose reduction and dose-dependent side effects.


2017 ◽  
Vol 9 ◽  
pp. 124
Author(s):  
Amelia Luthfiah ◽  
Erny Sagita ◽  
Iskandarsyah Iskandarsyah

Objectives: While p-synephrine exhibits lipolytic activity, it also has a low oral bioavailability as well as hydrophilic characteristic, so it is difficult forit to penetrate the epidermis if it is made into transdermal preparation. The purpose of this research was to increase the penetration of p-synephrineby preparing it as transfersome gel.Materials and Methods: Three transfersome formulas were prepared—F1, F2, and F3—with the surfactants used at Tween 80, Span 80, and thecombination of Tween 80 and Span 80 with a ratio of 1:1, respectively.Results: The results showed that F1 was the best formula, with the highest entrapment efficiency, of 64.058±0.754%, a particle size average of103.3 nm, polydispersity index 0.269±0.05, and zeta potential of −36.2±0.64 mV, so this formula was employed for the gel formulation. Two gelformulas were then prepared, transfersome gel (GT) and non transfersome gel (GNT).Conclusions: The two gels were evaluated for their physical stability, and GT was found to be more stable than GNT.


2021 ◽  
Author(s):  
Nooryza Martihandini ◽  
Silvia Surini ◽  
Anton Bahtiar

Background: Andrographolide is a phytoconstituent with anti-inflammatory activity, however, the compound’s poor oral bioavailability has hindered its effective formulation for oral administration. This study, therefore, aims to develop an ethosome for improving andrographolide penetration through the transdermal delivery system. Methods: This study developed 3 ethosome formulas with different andrographolide-phospholipid weight ratios (1:8, 1:9; 1:10), using the thin-layer dispersion-sonication method. Subsequently, the ethosomes were evaluated for particle size, polydispersity index, zeta potential, morphology, as well as entrapment efficiency, and incorporated into a gel dosage form. Subsequently, an in vitro penetration study was performed using Franz diffusion cells for 24 hours and the stability of the gels at 5 ± 2°C, 30 ± 2°C, and 40 ± 2°C, were studied for 3 months. Results: The results showed the optimal formula was E2, a 1:9 weight ratio formula of andrographolide and phospholipid. Based on the transmission electron micrograph, E2 possessed unilamellar, as well as spherical-shaped vesicles, and exhibited superior characteristics for transdermal delivery, with a particle size of 89.95 ± 0.75 nm, polydispersity index of 0.254 ± 0.020, a zeta potential of -39.3 ± 0.82 mV, and entrapment efficiency of 97.89 ± 0.02%. Furthermore, the cumulative andrographolide penetration and transdermal flux for the ethosomal gel of E2 (EG2) were 129.25 ± 4.66 µg/cm2 and 5.16 ± 0.10 µg/cm2/hours, respectively. All the ethosomal gel formulations exhibited improved penetration enhancement of andrographolide, compared to the nonethosomal formulations. Also, the andrographolide levels in the ethosomal and nonethosomal gels after 3 months ranged from 98.13 to 104.19%, 97.93 to 104.01%, and 97.23 to 102.26% at storage temperatures of 5 ± 2°C, 30 ± 2°C/RH 65% ± 5%, and 40 ± 2°C/RH 75% ± 5%, respectively. Conclusions: This study concluded that encapsulation into ethosome enhances andrographolide delivery through the skin.


2015 ◽  
Vol 88 (2) ◽  
pp. 214-223 ◽  
Author(s):  
Lucia Ruxandra Tefas ◽  
Ioan Tomuță ◽  
Marcela Achim ◽  
Laurian Vlase

Background and aims: Quercetin is a flavonoid with good antioxidant activity, and exhibits various important pharmacological effects. The aim of the present work was to study the influence of formulation factors on the physicochemical properties of quercetin-loaded polymeric nanoparticles in order to optimize the formulation.Materials and methods: The nanoparticles were prepared by the nanoprecipitation method. A 3-factor, 3-level Box-Behnken design was employed in this study considering poly(D,L-lactic-co-glycolic) acid (PLGA) concentration, polyvinyl alcohol (PVA) concentration and the stirring speed as independent variables. The responses were particle size, polydispersity index, zeta potential and encapsulation efficiency.Results: The PLGA concentration seemed to be the most important factor influencing quercetin-nanoparticle characteristics. Increasing PLGA concentration led to an increase in particle size, as well as encapsulation efficiency. On the other hand, it exhibited a negative influence on the polydispersity index and zeta potential. The PVA concentration and the stirring speed had only a slight influence on particle size and polydispersity index. However, PVA concentration had an important negative effect on the encapsulation efficiency. Based on the results obtained, an optimized formulation was prepared, and the experimental values were comparable to the predicted ones.Conclusions: The overall results indicated that PLGA concentration was the main factor influencing particle size, while entrapment efficiency was predominantly affected by the PVA concentration.


Sign in / Sign up

Export Citation Format

Share Document