scholarly journals PLANT-MEDIATED ZNO NANOPARTICLES USING FICUS RACEMOSA LEAF EXTRACT AND THEIR CHARACTERIZATION, ANTIBACTERIAL ACTIVITY

Author(s):  
Arun Babu Birusanti ◽  
Umamahesh Mallavarapu ◽  
Devanna Nayakanti ◽  
Chandra Sekhar Espenti

Objective: The motto of this research work was to synthesize the zinc oxide nanoparticles (ZnONPs) should be environmental friendly. Hence, it receives more attention toward the green route method.Methods: At last, the Ficus racemosa ZnONPs (FR-ZnONPs) were successfully synthesized using a simple protocol and eco favorable technique. This paper highlights the biosynthesis of ZnONPs using leaf extract of F. racemosa. Results: FR-ZnONPs formation was confirmed by the different spectral analysis such as UV-visible spectroscopy, Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and electronic dispersive X-ray spectroscopy. UV-visible studies revealed that the intrinsic band gap absorptions were at 372 nm and photoluminescence study showed that the blue emission at 492, 481, 473, and 450 nm and the green emission at 540 nm, respectively. FR-ZnONPs are wurtzite hexagonal structure with an average grain size of 15 nm was found from XRD analysis.Conclusion: FR-ZnONPs exhibited good antimicrobial efficacy on Escherichia coli and Staphylococcus aureus with various concentrations (100 μg/mL, 75 μg/mL, and 50 μg/mL) by disc diffusion method. The results showed the good antibacterial activity of FR-ZnONPs on G+ve and G-ve bacteria.

2021 ◽  
Vol 9 (6) ◽  
pp. 823-830
Author(s):  
T. Krishnasree ◽  
Pavani Peddi

A unique way, green, cost-effective, and direct fabrication method is proposed for the synthesis of Nickel Oxide Nanoparticles (NPs) in an eco-environmentally way through leaf extract of Suaeda maritima (L.) Dumort. The nickel oxide nanoparticles were synthesized using Nickel (II) nitrate hexahydrate as a metal source and aqueous leaf extract of S. maritima was utilized as a green reducing agent. The formation of NPs was monitored by the change in color in the reaction mixture and the synthesized NPs were characterized using UV-visible spectrophotometer, Fourier Transform infrared (FT-IR) spectroscopy, field emission scanning electron microscope (FE SEM), X-ray diffractometer (XRD), and energy-dispersive X-ray spectroscopy (EDX). Further, the antibacterial activity of synthesized NPs was carried using the agar plate well diffusion method and antioxidant activity by DPPH free radical scavenging activity of the NPs was studied. The UV-visible absorption spectra of nanoparticles show a characteristic maximum absorption peak centered at 397 nm. The functional group analysis by FT-IR confirms the presence of various bio-active functional groups in the synthesized particles. The structural characterization confirms that the particles were Face Centred Cubic lattice structure having IR-regular in shape and rough surface with average atomic weight percentages of 76.3%. The synthesized nanoparticles were found to be potent against the growth of gram-positive (Bacillus subtilis, Staphylococcus aureus) and gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. In the DPPH assay, the IC 50 values of the synthesized NPs were found to be 28.01 μg/mL which is very close to standard ascorbic acid (22.19 μg/mL) whereas the IC 50 of the aqueous plant leaf extract was found to be 47.30 μg/m confirms that the nanoparticles having enhanced antioxidant activity. From the results of the study it can be concluded that this protocol is simple, rapid, one step, eco-friendly, non-toxic for the synthesis of nickel nanoparticles.


Author(s):  
Subbiah Murugesan ◽  
Sundaresan Bhuvaneswari ◽  
Vajiravelu Sivamurugan

Objective: In the present system, the green synthesis of silver nanoparticles using marine the red alga Spyridia fusiformis and antibacterial activity was carried out.Methods: The seaweed extract was used for the synthesis of AgNPs at room temperature. The silver nanoparticles were characterized by using UV–Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscope and X-ray diffraction (XRD) techniques. The antibacterial activity of biosynthesized silver nanoparticles was carried out by disc diffusion method against pathogenic bacteria.Results: The UV-visible spectroscopy revealed surface plasmon resonance at 450 nm. The FT-IR measurements showed the possible functional groups responsible for the formation of nanoparticles. The X-ray diffraction analysis showed that the particles were crystalline in nature. TEM micrograph has shown the formation of silver nanoparticles with the size in the range of 5–50 nm. The silver nanoparticles synthesized from the S. fusiformis showed higher activity and proved their efficacy in controlling the pathogenic bacterial strains. The nanoparticles showed highest inhibition activity on K. pneumaniae and S. aureus up to 26 and 24±0.01 mm at 100 μg/ml of nanoparticles.Conclusion: The synthesised AgNPs have shown the best antibacterial activity against human pathogens E. coli, K. pneumoniae, S. aureus and P. aeruginosa. The above eco-friendly AgNPs synthesis procedure could be a viable solution for industrial applications in the future and therapeutic needs.


2021 ◽  
Vol 9 (3) ◽  
pp. 220-226
Author(s):  
Bishow Regmi ◽  
Tirtha Raj Binadi ◽  
Sarb Narayan Jha ◽  
Rajib Kumar Chaudhary ◽  
Bhoj Raj Poudel ◽  
...  

Silver nanoparticles (AgNPs) have been synthesized by green synthesis using Azadirachta indica leaf extract as both reducing and stabilizing agent. Synthesis of colloidal AgNPs was monitored by UV- visible spectroscopy. The UV- visible spectrum showed a peak at 455 nm corresponding to the plasmon absorbance of the silver nanoparticles. Crystallite structure of silver nanoparticles was studied using X-ray diffraction (XRD) analysis which revealed the face-centered cubic structure (FCC) with average particle size of 8.9 nm, calculated using Debye-Scherrer’s equation. Transmission electron microscopy (TEM) image revealed the agglomeration of small grain with particle size ranging from 2 to 14 nm. FCC crystalline nature was also evident from selected area electron diffraction (SAED) analysis. High purity of as-synthesized AgNPs was analyzed using energy dispersive X-ray (EDX) spectroscopy. Band gap energy was calculated to be 2.7 eV from UV- Visible spectra. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was stabilized by AgNPs which reveals its antioxidant efficacy. Well diffusion method showed 7 mm to 12 mm zone of inhibition (ZOI) against Gram-positive and Gram-negative bacteria, respectively confirming the antibacterial potential of AgNPs. Int. J. Appl. Sci. Biotechnol. Vol 9(3): 220-226.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ram Prasad ◽  
Vyshnava Satyanarayana Swamy

The unique property of the silver nanoparticles having the antimicrobial activity drags the major attention towards the present nanotechnology. The environmentally nontoxic, ecofriendly, and cost-effective method that has been developed for the synthesis of silver nanoparticles using plant extracts creates the major research interest in the field of nanobiotechnology. The synthesized silver nanoparticles have been characterized by the UV-visible spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). Further, the antibacterial activity of silver nanoparticles was evaluated by well diffusion method, and it was found that the biogenic silver nanoparticles have antibacterial activity against Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 29213), Pseudomonas aeruginosa (ATCC 27853), Azotobacter chroococcum WR 9, and Bacillus licheniformis (MTCC 9555).


2016 ◽  
Vol 864 ◽  
pp. 154-158
Author(s):  
Mariya Al Qibtiya ◽  
Eka Cahya Prima ◽  
Brian Yuliarto ◽  
Suyatman

Natural dyes extracted from black rice are used as sensitizer for dye sensitized solar cell. The anthocyanin extracted with various pH in acidic and neutral coditions. Preparation of fotolectrode TiO2 film using doctor blade method and resulting average grain size 33,9 nm using X-Ray Diffractometer. Characterization of morphology and cross-section film TiO2 is confirmed by Scanning Electron microscopy (SEM). Optical absorption using UV-Visible Spectroscopy to obtain spectrum absorbance of anthocyanin in various pH. The current-voltage (J-V) characterization shows the performance DSSC have a match relation to the optical absorption. The best absorption of anthocyanin obtained at pH 6 as well as conversion efficiency reaches 2.26% at this pH condition.


Author(s):  
MONIKA GUPTA

Objective: This research work develops an approach to synthesize silver nanoparticles (AgNPs) by reduction of leaf extract of Catharanthus roseus plant. This study produces synthesized nanoparticles that have process-controlled attributes which make their antibiotic action highly efficient. These attributes include smaller size, proper morphology, uniform dispersion, metal ion content, and formation of functional groups. By optimizing the reduction process parameters, AgNPs gain the desired properties.  Methods: The biosynthesis of AgNPs process was performed using reaction of 10% (w/v) C. roseus leaf extract with AgNO3. The optimum conditions and concentration used for synthesis of nanoparticles were: 1 mM AgNO3, pH 5, and temperature 80°C with an incubation time of 72 h. All the above parameters were analyzed by ultraviolet-visible spectrophotometer with the surface plasmon resonance peak obtained at 440 nm. Results: Various characterization techniques were performed, namely, scanning electron microscopy, energy-dispersive X-ray, transmission electron microscopy, photoluminescence study, X-ray diffraction spectroscopy, Fourier transform infrared, dynamic light scattering, and atomic force microscopy. The results obtained from characterization confirmed the spherical morphology of the nanoparticles with size between 50 and 87 nm. In the current investigation, the antimicrobial activity of biosynthesized AgNPs was also determined using minimum inhibitory concentration and zone of inhibition methods against six different bacteria at different doses of AgNPs (100, 150, and 200 μg/ml) alone and also in combination with antibiotic-streptomycin. Conclusion: The results revealed that high concentration of AgNPs inhibits the bacterial growth. Furthermore, AgNPs revealed much stronger antibacterial action in synergy with streptomycin against antibiotic-resistant bacteria.


2020 ◽  
Vol 11 (4) ◽  
pp. 5382-5387
Author(s):  
Irshad Ul Haq Bhat ◽  
Maisarah Binti Alias

The approach towards green synthetic methods has been enormously encouraged to synthesise nanoparticles for various uses. In this study, the one-pot synthetic method was adapted to synthesise silver nanoparticles (AgNPs) using Melastoma malabathricum (M. malabathricum) aqueous extract. The formation of AgNPs was confirmed by observing the results obtained by optical characterisation methods. The plasma resonance band along with shoulder at 375 nm and 595 nm, respectively, in Uv-Visible spectra supported the conversion of silver (Ag) to AgNPs reduced by functional groups present in the plant extract. The size of AgNPs was 31 nm and cubic in shape as confirmed by X-ray diffractometry (XRD) using Scherer equation. X-Ray Fluorescence (XRF) results also confirmed the presence of silver. The FTIR characterisation confirmed the presence of reducing functional groups. The antibacterial activity of AgNPs against Staphylococcus aureus (S. aureus) was carried out by disc diffusion method with increasing concentration of AgNPs, and enhanced inhibition zone was observed. The AgNPs obtained can be further explored against different bacterial strains and can a potential candidate as an antibacterial agent using the green synthetic approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Moira Carmalita Dharsika Niluxsshun ◽  
Koneswaran Masilamani ◽  
Umaramani Mathiventhan

Wide application of nanoparticles motivates the need for synthesising them. Here, a nontoxic, eco-friendly, and cost-effective method has been established for the synthesis of silver nanoparticles using extracts of lemon peel (Citrus limon), green orange peel (Citrus sinensis), and orange peel (Citrus tangerina). The synthesised nanoparticles have been characterised using UV-visible absorptionspectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy (TEM). The UV-visible absorption spectrum of these synthesised silver nanoparticles shows an absorption peak at around 440 nm. TEM images show different shaped particles with various sizes. Furthermore, the antibacterial activity of silver nanoparticles was appraised by a well-diffusion method and it was observed that the green synthesised silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be beneficial for nanotechnology-based biomedical applications.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


2018 ◽  
Vol 64 (4) ◽  
pp. 381
Author(s):  
Muhammad Tufiq Jamil ◽  
Javed Ahmad ◽  
Syed Hamad Bukhari ◽  
Murtaza Saleem

Rare earth nano sized pollycrystalline orthoferrites and orthocromites ReT mO3 (Re = La, Nd, Gd, Dy, Y and T m = Fe, Cr) have been synthesized by sol-gel auto combustion citrate method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. The samples are single phase as confirmed by XRD analysis and correspond to the orthorhombic crystal symmetry with space group pbnm. Debye Scherer formula and Williamson Hall analysis have been used to calculate the average grain size which is consistent with that of determined from SEM analysis and varied between 25-75 nm. The elemental compositions of all samples have been checked by EDX analysis. Different crystallographic parameters are calculated with strong structural correlation among Re and Tm sites. The optical energy band gap has been calculated by using Tauc relation estimated to be in the range of 1.77 - 1.87 eV and 2.77 - 3.14 eV, for ReFeO3 and ReCrO3, respectively.


Sign in / Sign up

Export Citation Format

Share Document