scholarly journals PIPERINE IN THE PREVENTION OF THE DECREASED TAMOXIFEN SENSITIVITY IN MCF-7 BREAST CANCER CELL LINE

2018 ◽  
Vol 10 (1) ◽  
pp. 335
Author(s):  
Sandy Vitria Kurniawan ◽  
Lies Sugiarti ◽  
Septelia Inawati Wanandi ◽  
Melva Louisa

Objective: This study was designed to analyze the role of piperine in modulating P-glycoprotein mRNA expression when added in combination withtamoxifen to breast cancer cells in culture.Methods: MCF-7 breast cancer cells were treated with 1 μM tamoxifen with or without piperine (12.5, 25, or 50 μM) or verapamil 50 μM (P-glycoproteininhibitor positive control) for up to 12 days. We assessed the cell viability and isolated total RNA from them. We quantified P-glycoprotein expressionsusing quantitative reverse transcription polymerase chain reaction.Results: Administration of various doses of piperine decreased MCF-7 breast cancer cell viability. Piperine, when given in combination with tamoxifen,decreased the expression of P-glycoprotein mRNA in cells compared with the expression in cells treated with tamoxifen only. The effects were shownto be dose dependent.Conclusion: Piperine prevents the development of breast cancer cell tamoxifen resistance, probably through its inhibition of P-glycoprotein expression.

2021 ◽  
Vol 11 (2) ◽  
pp. 326-332
Author(s):  
Le Ma ◽  
Zhenyu Liu ◽  
Zhimin Fan

Breast cancer is one of the most prevailing cancers in females, while the cancerous heterogeneity hinders its early diagnosis and subsequent therapy. miR-143-3p is a critical mediator in malignancy development and tumorigenesis as a tumor suppressor. Its role in various tumor entities has been investigated, such as colon cancer and breast cancer. Using MCF-7 breast cancer cell model, we planned to explore the underlying mechanisms of miR-143/KLF-5 axis in retarding breast cancer cells growth. Bioinformatics analysis searched the target KLF5 of miR-143, and the miR-143-targeted mimic and inhibitor were employed to detect the changes of KLF5. After transfection of mimic miR-143, the CCK-8 reagent assessed cell proliferation. Based on optimal stimulation time, miR-143 stimulation model was established, followed by determining expression of KLF5, EGFR and PCNA via western blot and qPCR. Eventually, siRNA-KLF5 was applied to silencing KLF5 level to evaluate its role in MCF-7 cells. The transcription and translation levels of KLF5 were diminished in miR-143-mimic transfected MCF-7 cells, while enhanced in miR-143-inhibitor transfected MCF-7 cells. When MCF-7 cells were transfected with miR-143-mimic at different time points, 48 hours was found to be the optimal transfection time, with reduced transcription and translation levels of KLF5, EGFR and PCNA. The transcription and translation levels of PNCA and EGFR were declined after silencing KLF5 by siRNA. miR-143/KLF5 axis could retard the proliferation of MCF-7 breast cancer cells.


2020 ◽  
Vol 19 ◽  
pp. 153303382097967
Author(s):  
Jin Zhang ◽  
Nan Shao ◽  
Xiaoyu Yang ◽  
Chuanbo Xie ◽  
Yawei Shi ◽  
...  

The microRNA-200 (miR-200) family has been reported to be vital for the inhibition of epithelial-to-mesenchymal transition (EMT) in tumor cells. The miR-200 family represents a complex multi-factorial regulatory network which has not been well described in breast cancer. This study aimed to clarify the underlying regulatory association between IL-8 and miR-200 family in the process of EMT in breast cancer cell. In estrogen-receptor (ER) positive breast cancer cell line MCF-7, IL-8 overexpression cells were performed by lentivirus transfection as endogenous regulation with additional exogenous IL-8 stimulation. Transient overexpressions of miR-200 family were performed after endogenous or exogenous IL-8 overexpression in MCF-7 cells. IL-8 knockdown cells were constructed via siRNA and shRNA transfection in triple negative breast cancer cell line MDA-MB-231. N-cadherin, vimentin and ZEB2 were down-regulated and E-cadherin was up-regulated in IL-8 knockdown group compared with control group. On the other hand, N-cadherin, vimentin and ZEB2 were up-regulated and E-cadherin was down-regulated in IL-8 overexpression group compared with control group. This indicated IL-8 promotes EMT in breast cancer cells. Transwell assay showed that IL-8 increased the migration and invasiveness of tumor cells. Furthermore, we performed transient overexpression of miR-200 family after endogenous or exogenous IL-8 overexpression in MCF-7 cells, which showed that the miR-200 family could inhibit EMT induced by IL-8. IL-8 promoted EMT via downregulation of miR-200 family expression in breast cancer cells and increases tumor cell migration and invasion.


2020 ◽  
Author(s):  
Mengyu Wei ◽  
Jun Hao ◽  
Xiaomei Liao ◽  
Yinfeng Liu ◽  
Ruihuan Fu ◽  
...  

Abstract Background Mitofusin 2 (MFN2) is localized on the outer membrane of mitochondria and is closely related to the migration of malignant tumor cells. Estrogen receptor β (ERβ) plays an anticancer role in breast cancer. Our previous experiments showed that ERβ can induce MFN2 expression, which then inhibits breast cancer cell migration. However, the exact mechanism by which ERβ-induced MFN2 inhibits breast cancer cell migration is unknown. Methods In this study, immunohistochemistry was first used to detect the expression of MFN2 in breast cancer tissues, and its relationship with the clinicopathological characteristics and prognosis of breast cancer patients was analyzed. MCF-7 and MDA-MB-231 cells were transfected with ERβ and MFN2 knockdown or expression plasmids. Western blot was used to detect the effects of ERβ on MFN2 and MFN2 on P-AKT473 and MMP2; the P-AKT pathway inhibitor LY294002 was administered to cells transfected with MFN2 knockdown plasmids, Western blot, immunocytofluorescence, and a wound healing assay revealed the effect of MFN2 on its downstream signaling pathway and the migration of breast cancer cells. Results This study found that the expression of MFN2 is related to the molecular type and prognosis of breast cancer patients ( P <0.05). The positive expression rate of MFN2 in triple-negative breast cancer was significantly lower than that in the HER2 + and luminal types. However, MFN2 expression was unrelated to age, tumor size, lymph node metastasis, TNM stage, histological type and grade ( P >0.05); ERβ positively regulated MFN2 expression and reduced the migration of both MCF-7 and MDA-MB-231 cells, while MFN2 knockdown increased the expression of P-AKT473 and MMP2. In contrast, the overexpression of MFN2 inhibited the expression of P-AKT473 and MMP2. These results showed that in MFN2 knockdown cells treated with LY294002, P-AKT473 and MMP2 expression levels were reversed. The reversal of P-AKT473 and MMP2 expression levels inhibits the invasiveness of human breast cancer cells. Conclusion MFN2 is related to the molecular subtype and prognosis of breast cancer. In human breast cancer MCF-7 and MDA-MB-231 cells, ERβ-induced MFN2 can inhibit the P-AKT pathway, which inhibits the invasiveness and migration of both breast cancer cell lines.


2018 ◽  
Vol 46 (4) ◽  
pp. 1737-1747 ◽  
Author(s):  
Yue Zhang ◽  
Qingyuan Zhang ◽  
Zhongru Cao ◽  
Yuanxi Huang ◽  
Shaoqiang Cheng ◽  
...  

Background/Aims: Homeobox D3 (HOXD3) is a member of the homeobox family of genes that is known primarily for its transcriptional regulation of morphogenesis in all multicellular organisms. In this study, we sought to explore the role that HOXD3 plays in the stem-like capacity, or stemness, and drug resistance of breast cancer cells. Methods: Expression of HOXD3 in clinical breast samples were examined by RT-PCR and immunohistochemistry. HOXD3 expression in breast cancer cell lines were analyzed by RT-PCR and western blot. Ability of drug resistance in breast cancer cells were elevated by MTT cell viability and colony formation assays. We examined stemness using cell fluorescent staining, RT-PCR and western blot for stem cell marker expression. Finally, activity of wnt signaling was analyzed by FOPflash luciferase assays. RT-PCR and western blot were performed for downstream genes of wnt signaling. Results: We demonstrated that HOXD3 is overexpressed in breast cancer tissue as compared to normal breast tissue. HOXD3 overexpression enhances breast cancer cell drug resistance. Furthermore, HOXD3 upregulation in the same cell lines increased sphere formation as well as the expression levels of stem cell biomarkers, suggesting that HOXD3 does indeed increase breast cancer cell stemness. Because we had previously shown that HOXD3 expression is closely associated with integrin β3 expression in breast cancer patients, we hypothesized that HOXD3 may regulate breast cancer cell stemness and drug resistance through integrin β 3. Cell viability assays showed that integrin β 3 knockdown increased cell viability and that HOXD3 could not restore cancer cell stemness or drug resistance. Given integrin β 3’s relationship with Wnt/β-catenin signaling, we determine whether HOXD3 regulates integrin β 3 activity through Wnt/β-catenin signaling. We found that, even though HOXD3 increased the expression of Wnt/β-catenin downstream genes, it did not restore Wnt/β-catenin signaling activity, which was inhibited in integrin β3 knockdown breast cancer cells. Conclusion: We demonstrate that HOXD3 plays a critical role in breast cancer stemness and drug resistance via integrin β3-mediated Wnt/β-catenin signaling. Our findings open the possibility for improving the current standard of care for breast cancer patients by designing targeted molecular therapies that overcome the barriers of cancer cell stemness and drug resistance.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Thandi Mqoco ◽  
André Stander ◽  
Anna-Mart Engelbrecht ◽  
Anna M Joubert

Current chemotherapeutic agents have many side effects and are toxic to normal cells, providing impetus to identify agents that can effectively eliminate tumorigenic cells without damaging healthy cells. The aim of this study was to examine whether combining a novel BRD4 inhibitor, ITH-47, with the antimitotic estradiol analogue, ESE-15-ol, would have a synergistic effect on inhibiting the growth of two different breast cancer cell lines in vitro. Our docking and molecular dynamics studies showed that compared to JQ1, ITH-47 showed a similar binding mode with hydrogen bonds forming between the ligand nitrogens of the pyrazole, ASN99, and water of the BRD4 protein. Data from cell growth studies revealed that the GI50 of ITH-47 and ESE-15-ol after 48 hours of exposure was determined to be 15 μM and 70 nM, respectively, in metastatic MDA-MB-231 breast cancer cells. In tumorigenic MCF-7 breast cancer cells, the GI50 of ITH-47 and ESE-15-ol was 75 μM and 60 nM, respectively, after 48 hours of exposure. Furthermore, the combination of 7.5 μM and 14 nM of ITH-47 and ESE-15-ol, respectively, resulted in 50% growth inhibition of MDA-MB-231 cells resulting in a synergistic combination index (CI) of 0.7. Flow cytometry studies revealed that, compared to the control, combination-treated MDA-MB-231 cells had significantly more cells present in the sub-G1 phase and the combination treatment induced apoptosis in the MDA-MB-231 cells. Compared to vehicle-treated cells, the combination-treated cells showed decreased levels of the BRD4, as well as c-Myc protein after 48 hours of exposure. In combination, the selective BRD4 inhibitor, ITH-47, and ESE-15-ol synergistically inhibited the growth of MDA-MB-231 breast cancer cells, but not of the MCF-7 cell line. This study provides evidence that resistance to BRD4 inhibitors may be overcome by combining inhibitors with other compounds, which may have treatment potential for hormone-independent breast cancers.


Author(s):  
Abolfazl Fattah ◽  
Ali Morovati ◽  
Zahra Niknam ◽  
Ladan Mashouri ◽  
Amirhooman Asadi ◽  
...  

Background: Piperine is a natural compound obtained from the Piper nigrum that exhibits anti-proliferative and anti-cancer activity in cancer cell lines. We analyzed the cytotoxic effect of piperine combined with cisplatin compound in the human MCF-7 breast cancer cell line and the underlying mechanism. Methods: The present in vitro study was performed on MCF-7 cell line in Jahrom University of Medical Sciences between, Jahrom, Iran from 2016 to 2017. Cultured MCF-7 cells were seeded into four groups: a control group (untreated group), a group treated with cisplatin, a group treated with piperine and a group treated with cisplatin and piperine. Cell viability was analyzed using the MTT assay method. Flow c-ytometric analysis was investigated for apoptosis. The mRNA and protein expression of the apoptotic regulators p53, Bcl-2, Bax, caspase 3 and caspase 9 were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis. Results: Piperine (20 and 30 µM) in combination with cisplatin (5, 10 and 15 µM) for 24 h synergistically inhibited cell viability of MCF-7 breast cancer cells more than piperine and cisplatin used alone. Synergistic antibreast cancer activities cisplatin (5 µM) and piperine (20 µM) were via inducing apoptosis. Piperine (20 µM) and cisplatin (5 µM) for 24 h induce apoptosis strongly through reduction of Bcl-2 and increase of caspase 3, p53, caspase 9, and Bax. Conclusion: Piperine in combination with cisplatin could trigger p53-mediated apoptosis more effective than cisplatin alone in MCF-7 breast cancer cells, reducing the toxic dose of cisplatin used in cancer chemotherapy.


2019 ◽  
Vol 18 (14) ◽  
pp. 2032-2041 ◽  
Author(s):  
Nil Kılıç ◽  
Sümer Aras ◽  
Demet Cansaran-Duman

Objective: Breast cancer is one of the most common diseases among women worldwide and it is characterized by a high ratio of malignancy and metastasis and low rate of survival of patients. Due to limited treatment options, the discovery of alternative therapeutic agents and clarifying the molecular mechanism of breast cancer development may offer new hope for its treatment. Lichen secondary metabolites may be one of these therapeutic agents. Methods: In this study, the effects of Vulpinic Acid (VA) lichen secondary metabolite on the cell viability and apoptosis of breast cancer cells and non-cancerous cell line were investigated. Quantitative polymerase chain reaction was also performed to determine changes in the expression of apoptosis-related genes at a molecular level. Results: The results demonstrated that VA significantly inhibited the cell viability and induced apoptosis of human breast cancer cells. The highest rates of decreased growth were determined using the IC50 value of VA for 48h on MCF-7 breast cancer cell. Interestingly, VA treatment significantly reduced cell viability in all examined breast cancer cell lines compared to their non-cancerous human breast epithelial cell line. This is the first study on the investigation of the effects of VA on the molecular mechanisms associated with the expression of apoptosis-related genes in breast cancer cell lines. Results demonstrated that the gene expression of P53 genes was altered up to fourteen-fold levels in SK-BR-3 cell lines whereas it reached 2.5-fold in the MCF-12A cell line after treatment with VA. These observations support that VA induces apoptosis on the breast cancer cells compared with the non-cancerous human breast epithelial cell line. Conclusion: It is implicated that VA may be a promising novel molecule for the induction of apoptosis on breast cancer cells.


1997 ◽  
Vol 82 (6) ◽  
pp. 1790-1798 ◽  
Author(s):  
Rama Natarajan ◽  
Robert Esworthy ◽  
Wei Bai ◽  
Jia-Li Gu ◽  
Sharon Wilczynski ◽  
...  

Abstract The interaction of growth factors, such as epidermal growth factor (EGF) with their receptors, on breast cancer cells can lead to the hydrolysis of phospholipids and release of fatty acids, such as arachidonic acid, which can be further metabolized by the lipoxygenase (LO) pathway. Several LO products have been shown to stimulate oncogenes and have mitogenic and chemotactic effects. In this study, we have evaluated the regulation of 12-LO activity and expression in breast cancer cells and tissues. Leukocyte-type 12-LO messenger RNA (mRNA) expression was studied by a specific RT-PCR method in matched, normal, uninvolved and cancer-involved breast tissue RNA samples from six patients. In each of these six patients, the cancer-involved section showed a much higher level of 12-LO mRNA than the corresponding normal section. 12-LO mRNA levels also were greater in two breast cancer cell lines, MCF-7 and COH-BR1, compared with the nontumorigenic breast epithelial cell line, MCF-10F. The growth of the MCF-7 cells was significantly inhibited by two specific LO blockers but not by a cyclooxygenase blocker. Treatment of serum-starved MCF-7 cells with EGF for 4 h led to a dose-dependent increase in the formation of the 12-LO product, 12-hydroxyeicosatetraenoic acid. EGF treatment also increased the levels of the leukocyte-type 12-LO protein expression at 24 h. These results suggest that activation of the 12-LO pathway may play a key role in basal and EGF-induced breast cancer cell growth.


Author(s):  
Xiaodan Zhu ◽  
Lu Zhao ◽  
Jianliang You ◽  
Yiqun Ni ◽  
Zhipeng Wei ◽  
...  

Number 3 Prescription (WD-3) is an herbal remedy used in traditional Chinese medicine that has been shown to improve the outcomes of patients with advanced colon and gastric cancers. This study aimed to investigate the effect of WD-3 on proliferation, glycolysis, and hexokinase 2 expression in breast cancer cells. Four breast cancer cell lines (MDA-MB-231, BT-549, MCF-7, and MCF-7/ADR-RES) were treated with different concentrations of WD-3 compared with blank control (phosphate-buffered saline). Each of the breast cancer cell lines was also divided into WD-3, paclitaxel, and blank control group. Cell proliferation and morphology were assessed by MTT assay, nuclear Hoechst 33258 staining, or immunofluorescence. Apoptosis was analyzed by flow cytometry. High performance liquid chromatography was used for measurement of ATP, ADP, and AMP. Hexokinase 2 expression was analyzed by Western blot and quantitative reverse transcription PCR. WD-3 inhibited proliferation and increased apoptosis in all four breast cancer cell lines, in a dose-dependent manner. ATP and EC (energy charge) were significantly decreased in WD-3-treated BT-549 and MDA-MB-231 cells. WD-3 significantly downregulated the protein and mRNA expression of hexokinase II in BT-549 cells, however, not in the other three breast cancer cell lines. Our findings indicate that WD-3 targets the glycolytic pathway in breast cancer cells to exert its antitumor activity.


2019 ◽  
Vol 63 (2) ◽  
pp. 103-112 ◽  
Author(s):  
Yan Zheng ◽  
Kevin D Houston

G protein-coupled estrogen receptor 1 (GPER1) is a seven-transmembrane receptor that mediates rapid cell signaling events stimulated by estrogens. While the role that GPER1 has in the modulation of E2-responsive tissues and cancers is well documented, the molecular mechanisms that regulate GPER1 expression are currently not well defined. The recently identified GPER1-dependent mechanism of tamoxifen action in breast cancer cells underscores the importance of identifying mechanisms that regulate GPER1 expression in this cell type. We hypothesized that GPER1 expression in breast cancer cells is sensitive to [D-glucose] and provide data showing increased GPER1 expression when cells were cultured in low [D-glucose]. To determine if the observed accumulation of GPER1 was AMP-activated protein kinase (AMPK)-dependent, small molecule stimulation or inhibition of AMPK was performed. AMPK inhibition decreased GPER1 accumulation in cells grown in low [D-glucose] while the AMPK-activating compound AICAR increased GPER1 accumulation in cells grown in high [D-glucose] media. Additionally, transfection of cells with a plasmid expressing constitutively active AMPK resulted in increased GPER1 accumulation. To determine if [D-glucose]-dependent GPER1 accumulation altered breast cancer cell response to tamoxifen, cells grown in the presence of decreasing [D-glucose] were co-treated with tamoxifen and IGFBP-1 transcription was measured. The results from these experiments reveal that D-glucose deprivation increased GPER1-mediated and tamoxifen-induced IGFBP-1 transcription suggesting that [D-glucose] may increase breast cancer cell sensitivity to tamoxifen. Taken together, these results identify a previously unknown mechanism that regulates GPER1 expression that modifies one aspect tamoxifen action in breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document