scholarly journals Histological observation on the initial stage of vascular invasion into the secondary ossification of murine femoral epiphyseal cartilage

2021 ◽  
Vol 42 (4) ◽  
pp. 139-151
Author(s):  
Keiji HASHIMOTO ◽  
Tomoka HASEGAWA ◽  
Tomomaya YAMAMOTO ◽  
Hiromi HONGO ◽  
Y IMIN ◽  
...  
Cartilage ◽  
2020 ◽  
pp. 194760352097857
Author(s):  
Shengyang Jin ◽  
Liang Yang ◽  
Chunqing Meng ◽  
Yu He ◽  
Kaige Ma ◽  
...  

Objective Excessive use of glucocorticoids (GCs) may cause adverse effects on the skeletal system in children. However, only a few studies have reported the effects of GCs on the epiphyseal cartilage. This study aimed to uncover the subsequent epiphyseal cartilage changes of immature femoral heads after excessive GC treatment in a mouse model and explain the pathological changes preliminarily. Design Female C57BL/6 mice were divided into control and model (excessive GC treatment) groups. The structure of the femoral heads was evaluated by using micro-computed tomography, hematoxylin-eosin staining, and safranin staining analyses. Immunohistochemistry was used to detect angiogenesis and cartilage metabolism. Western blotting and TUNEL staining were used to examine epiphyseal cartilage chondrocyte apoptosis. Primary chondrocytes were isolated from the femoral heads of healthy mice for in vitro studies. The effects of GCs on chondrocyte apoptosis and metabolism were determined by flow cytometry and Western blotting. Results The epiphyseal cartilage ossification had started at 4 weeks posttreatment in a portion of mice; the ossification presented as a sequential process in the model group, while the epiphyseal cartilage maintained an unossified state in the control group. Vascular invasion into the epiphyseal cartilage of the model mice was observed at 4 weeks posttreatment. GCs induced chondrocyte apoptosis and altered chondrocyte metabolism in the epiphyseal cartilage. Conclusions The epiphyseal cartilage ossification accelerated in the femoral heads of female C57BL/6 mice after excessive GC treatment. Increased chondrocyte apoptosis, altered chondrocyte metabolism, as well as increased vascular invasion, are the potential factors influencing epiphyseal cartilage ossification.


2013 ◽  
Vol 34 (3) ◽  
pp. 119-128 ◽  
Author(s):  
Taku KOJIMA ◽  
Tomoka HASEGAWA ◽  
Paulo Henrique Luiz DE FREITAS ◽  
Tomomaya YAMAMOTO ◽  
Muneteru SASAKI ◽  
...  

Author(s):  
H. Clarke Anderson ◽  
Priscilla R. Coulter

Epiphyseal cartilage matrix contains fibrils and particles of at least 5 different types: 1. Banded collagen fibrils, present throughout the matrix, but not seen in the lacunae. 2. Non-periodic fine fibrils <100Å in diameter (Fig. 1), which are most notable in the lacunae, and may represent immature collagen. 3. Electron dense matrix granules (Fig. 1) which are often attached to fine fibrils and collagen fibrils, and probably contain protein-polysaccharide although the possibility of a mineral content has not been excluded. 4. Matrix vesicles (Fig. 2) which show a selective distribution throughout the epiphysis, and may play a role in calcification. 5. Needle-like apatite crystals (Fig. 2).Blocks of formalin-fixed epiphysis from weanling mice were digested with the following agents in 0.1M phosphate buffer: a) 5% ethylenediaminetetraacetate (EDTA) at pH 8.3, b) 0.015% bovine testicular hyaluronidase (Sigma, type IV, 750 units/mg) at pH 5.5, and c) 0.1% collagenase (Worthington, chromatograhically pure, 200 units/mg) at pH 7.4. All digestions were carried out at 37°C overnight. Following digestion tissues were examined by light and electron microscopy to determine changes in the various fibrils and particles of the matrix.


Author(s):  
D.W. Susnitzky ◽  
S.R. Summerfelt ◽  
C.B. Carter

Solid-state reactions have traditionally been studied in the form of diffusion couples. This ‘bulk’ approach has been modified, for the specific case of the reaction between NiO and Al2O3, by growing NiAl2O4 (spinel) from electron-transparent Al2O3 TEM foils which had been exposed to NiO vapor at 1415°C. This latter ‘thin-film’ approach has been used to characterize the initial stage of spinel formation and to produce clean phase boundaries since further TEM preparation is not required after the reaction is completed. The present study demonstrates that chemical-vapor deposition (CVD) can be used to deposit NiO particles, with controlled size and spatial distributions, onto Al2O3 TEM specimens. Chemical reactions do not occur during the deposition process, since CVD is a relatively low-temperature technique, and thus the NiO-Al2O3 interface can be characterized. Moreover, a series of annealing treatments can be performed on the same sample which allows both Ni0-NiAl2O4 and NiAl2O4-Al2O3 interfaces to be characterized and which therefore makes this technique amenable to kinetics studies of thin-film reactions.


Author(s):  
H. Bethge

Besides the atomic surface structure, diverging in special cases with respect to the bulk structure, the real structure of a surface Is determined by the step structure. Using the decoration technique /1/ it is possible to image step structures having step heights down to a single lattice plane distance electron-microscopically. For a number of problems the knowledge of the monatomic step structures is important, because numerous problems of surface physics are directly connected with processes taking place at these steps, e.g. crystal growth or evaporation, sorption and nucleatlon as initial stage of overgrowth of thin films.To demonstrate the decoration technique by means of evaporation of heavy metals Fig. 1 from our former investigations shows the monatomic step structure of an evaporated NaCI crystal. of special Importance Is the detection of the movement of steps during the growth or evaporation of a crystal. From the velocity of a step fundamental quantities for the molecular processes can be determined, e.g. the mean free diffusion path of molecules.


Author(s):  
W.T. Gunning ◽  
G.D. Haselhuhn ◽  
E.R. Phillips ◽  
S.H. Selman

Within the last few years, adrenal cortical tumors with features concordant with the diagnostic criteria attributed to oncocytomas have been reported. To date, only nine reported cases exist in the literature. This report is the tenth case presentation of a presumptively benign neoplasm of the adrenal gland with a rare differentiation. Oncocytomas are well recognized benign tumors of the thyroid, parathyroid, and salivary glands and of the kidney. Other organs also give rise to these types of tumors, however with less frequency than the former sites. The characteristics generally used to classify a tumor as an oncocytoma include the following criteria: the tumor is 1) usually a solitary circumscribed mass with no gross nor microscopic evidence of metastasis (no tissue nor vascular invasion), 2) fairly bland in terms of mitotic activity and nuclear morphology, and 3) composed of large eosinophillic cells in which the cytoplasm is packed full of mitochondria (Figure 1).


Author(s):  
Xianghong Tong ◽  
Oliver Pohland ◽  
J. Murray Gibson

The nucleation and initial stage of Pd2Si crystals on Si(111) surface is studied in situ using an Ultra-High Vacuum (UHV) Transmission Electron Microscope (TEM). A modified JEOL 200CX TEM is used for the study. The Si(111) sample is prepared by chemical thinning and is cleaned inside the UHV chamber with base pressure of 1x10−9 τ. A Pd film of 20 Å thick is deposited on to the Si(111) sample in situ using a built-in mini evaporator. This room temperature deposited Pd film is thermally annealed subsequently to form Pd2Si crystals. Surface sensitive dark field imaging is used for the study to reveal the effect of surface and interface steps.The initial growth of the Pd2Si has three stages: nucleation, growth of the nuclei and coalescence of the nuclei. Our experiments shows that the nucleation of the Pd2Si crystal occurs randomly and almost instantaneously on the terraces upon thermal annealing or electron irradiation.


Author(s):  
C. Vannuffel ◽  
C. Schiller ◽  
J. P. Chevalier

Recently, interest has focused on the epitaxy of GaAs on Si as a promising material for electronic applications, potentially for integration of optoelectronic devices on silicon wafers. The essential problem concerns the 4% misfit between the two materials, and this must be accommodated by a network of interfacial dislocations with the lowest number of threading dislocations. It is thus important to understand the detailed mechanism of the formation of this network, in order to eventually reduce the dislocation density at the top of the layers.MOVPE growth is carried out on slightly misoriented, (3.5°) from (001) towards , Si substrates. Here we report on the effect of this misorientation on the interfacial defects, at a very early stage of growth. Only the first stage, of the well-known two step growth process, is thus considered. Previously, we showed that full substrate coverage occured for GaAs thicknesses of 5 nm in contrast to MBE growth, where substantially greater thicknesses are required.


2010 ◽  
Vol 43 (18) ◽  
pp. 48-49
Author(s):  
MICHELE G. SULLIVAN

Sign in / Sign up

Export Citation Format

Share Document